1 |
Potra F A . Weighted complementarity problems-a new paradigm for computing equilibria. SIAM J Optim, 2012, 22 (4): 1634- 1654
doi: 10.1137/110837310
|
2 |
Anstreicher K M . Interior-point algorithms for a generalization of linear programming and weighted centring. Optim Methods Softw, 2012, 27 (4/5): 605- 612
|
3 |
Potra F A . Sufficient weighted complementarity problems. Comput Optim Appl, 2016, 64 (2): 467- 488
doi: 10.1007/s10589-015-9811-z
|
4 |
Jian Z . A smoothing Newton algorithm for weighted linear complementarity problem. Optim Lett, 2016, 10 (3): 499- 509
doi: 10.1007/s11590-015-0877-4
|
5 |
Chi X N , Gowda M S , Tao J Y . The weighted horizontal linear complementarity problem on a Euclidean Jordan algebra. J Global Optim, 2019, 73 (1): 153- 169
doi: 10.1007/s10898-018-0689-z
|
6 |
Chen X J , Qi L Q , Sun D F . Global and superlinear convergence of the smooothing Newton method and its application to general box constrained variational inequalities. Math Comput, 1998, 67 (222): 519- 540
doi: 10.1090/S0025-5718-98-00932-6
|
7 |
Chi X N , Liu S Y . A one-step smoothing Newton method for second-order cone programming. J Comput Appl Math, 2009, 223 (1): 114- 123
doi: 10.1016/j.cam.2007.12.023
|
8 |
Hayashi S , Yamashita N , Fukushima M . A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J Optim, 2005, 15 (8): 593- 615
|
9 |
Huang Z H , Ni T . Smoothing algorithms for complementarity problems over symmetric cones. Comput Optim Appl, 2010, 45 (3): 557- 579
doi: 10.1007/s10589-008-9180-y
|
10 |
Kong L C , Sun J , Xiu N H . A regularized smoothing Newton method for symmetric cone complementarity problems. SIAM J Optim, 2008, 19 (3): 1028- 1047
doi: 10.1137/060676775
|
11 |
Fang L , He G P . Some modifications of Newton's method with higher-order convergence for solving nonlinear equations. J Comput Appl Math, 2009, 228 (1): 296- 303
doi: 10.1016/j.cam.2008.09.023
|
12 |
Liu Y J , Zhang L W , Wang Y H . Analysis of a smoothing method for symmetric conic linear programming. J Appl Math Comput, 2006, 22 (1/2): 133- 148
doi: 10.1007/BF02896466
|
13 |
Pan S H , Chen J S . A regularization method for the second-order cone complementarity problem with the Cartesian P0-property. Nonlinear Anal, 2009, 70 (4): 1475- 1491
doi: 10.1016/j.na.2008.02.028
|
14 |
Qi L Q , Sun D F , Zhou G L . A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math Program, 2000, 87 (1): 1- 35
doi: 10.1007/s101079900127
|
15 |
Tang J Y , Dong L , Zhou J C , et al. A smoothing-type algorithm for the second-order cone complementarity problem with a new nonmonotone line search. Optim, 2015, 64 (9): 1935- 1955
doi: 10.1080/02331934.2014.906595
|
16 |
Wu J , Zhang L W , Zhang Y . A smoothing Newton method for mathematical programs governed by second-order cone constrained generalized equations. J Glob Optim, 2013, 55 (2): 359- 385
doi: 10.1007/s10898-012-9880-9
|
17 |
Yu G L , Liu S Y . Optimality conditions of globally proper efficient solutions for set-valued optimization problems. Acta Math Appl Sin, 2010, 33 (1): 150- 160
|
18 |
Zhang Y S , Gao L F . A smoothing inexact Newton method for symmetric cone complementarity problems. Acta Math Sci, 2015, 35A (4): 824- 832
|
19 |
Chi X N , Liu S Y . An infeasible-interior-point predictor-corrector algorithm for the second-order cone program. Acta Math Sci, 2008, 28B (3): 551- 559
|
20 |
Yoshise A . Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones. SIAM J Optim, 2006, 17 (4): 1129- 1153
|
21 |
Wan Z P , Wang X J , He J L , et al. Asymptotic approximation method and its convegence on semi-infinite programming. Acta Math Sci, 2006, 26B (1): 17- 24
|
22 |
Xu Y H , Liu S Y . The (h, φ)-Lipschitz function, its generalized directional derivative and generalized gradient. Acta Math Sci, 2006, 26A (2): 212- 222
|
23 |
Ahookhosh M , Ghaderi S . On efficiency of nonmonotone Armijo-type line searches. Appl Math Model, 2017, 43, 170- 190
doi: 10.1016/j.apm.2016.10.055
|
24 |
Grippo L , Lampariello F , Lucidi S . A nonmonotone line search technique for Newton's Method. SIAM J Numer Anal, 1986, 23 (4): 707- 716
doi: 10.1137/0723046
|
25 |
Zhang H , Hager W W . A nonmonotone line search technique and its application to unconstrained optimization. SIAM J Optim, 2004, 14 (4): 1043- 1056
doi: 10.1137/S1052623403428208
|
26 |
Faraut J , Korányi A . Analysis on Symmetric Cones. New York: Oxford University Press, 1994
|
27 |
Mifflin R . Semismooth and semiconvex functions in constrained optimization. SIAM J Control Optim, 1977, 15 (6): 957- 972
|
28 |
Qi L , Sun J . A nonsmooth version of Newton's method. Math Program, 1993, 58 (1/3): 353- 367
|
29 |
Clarke F H . Optimization and Nonsmooth Analysis. New York: Wiley, 1983
|
30 |
Gowda M S , Sznajder R , Tao J . Some P-properties for linear transformations on Euclidean algebras. Linear Algebra Appl, 2004, 393 (1): 203- 232
|
31 |
Sun D , Sun J . Strong semismoothness of the Fischer-Burmeister SDC and SOC complementarity functions. Math Program, 2005, 103 (3): 575- 581
doi: 10.1007/s10107-005-0577-4
|