数学物理学报 ›› 2021, Vol. 41 ›› Issue (2): 523-537.
收稿日期:
2019-11-03
出版日期:
2021-04-26
发布日期:
2021-04-29
通讯作者:
李春秋
E-mail:xiaoqiaoyi1127@139.com;licqmath@tju.edu.cn
作者简介:
肖巧懿, E-mail: 基金资助:
Received:
2019-11-03
Online:
2021-04-26
Published:
2021-04-29
Contact:
Chunqiu Li
E-mail:xiaoqiaoyi1127@139.com;licqmath@tju.edu.cn
Supported by:
摘要:
研究由非自治三分量可逆Gray-Scott模型在无穷格点上所生成过程的相关时均观测的Borel概率测度.首先,证明该过程存在拉回-
中图分类号:
肖巧懿,李春秋. 离散的三分量可逆Gray-Scott模型的不变Borel概率测度[J]. 数学物理学报, 2021, 41(2): 523-537.
Qiaoyi Xiao,Chunqiu Li. Invariant Borel Probability Measures for the Discrete Three Component Reversible Gray-Scott Model[J]. Acta mathematica scientia,Series A, 2021, 41(2): 523-537.
1 |
Bates P W , Lu K , Wang B . Attractors for lattice dynamical systems. Inter J Bifur Chaos, 2001, 11, 143- 153
doi: 10.1142/S0218127401002031 |
2 |
Beyn W J , Pilyugin S Yu . Attractors of reaction diffusion systems on infinite lattices. J Dyn Differential Equations, 2003, 15, 485- 515
doi: 10.1023/B:JODY.0000009745.41889.30 |
3 | Babin A V , Vishik M I . Attractors of Evolution Equations. Amsterdam: North-Holland, 1992 |
4 | Chow S N . Lattice dynamical systems. Lecture Notes in Math, 2003, 1822, 1- 102 |
5 |
Caraballo T , Łukaszewicz G , Real J . Pullback attractors for asymptotically compact nonautonomous dynamical systems. Nonlinear Anal, 2006, 64, 484- 498
doi: 10.1016/j.na.2005.03.111 |
6 |
Caraballo T , Łukaszewicz G , Real J . Pullback attractors for nonautonomous 2D-Navier-Stokes equations in some unbounded domains. C R Acad Sci Paris, Ser I, 2006, 342, 263- 268
doi: 10.1016/j.crma.2005.12.015 |
7 |
Chueshov I , Lasiecka I . Attractors for second-order evolution equations with a nonlinear damping. J Dyn Differential Equations, 2004, 16, 469- 512
doi: 10.1007/s10884-004-4289-x |
8 |
Chekroun M , Glatt-Holtz N E . Invariant measures for dissipative dynamical systems: Abstract results and applications. Comm Math Phys, 2012, 316, 723- 761
doi: 10.1007/s00220-012-1515-y |
9 | Chepyzhov V V , Vishik M I . Attractors for Equations of Mathematical Physics. Providence, RI: Amer Math Soc, 2002 |
10 |
Erneux T , Nicolis G . Propagating waves in discrete bistable reaction diffusion systems. Physica D, 1993, 67, 237- 244
doi: 10.1016/0167-2789(93)90208-I |
11 | Foias C , Manley O , Rosa R , Temam R . Navier-Stokes Equations and Turbulence. Cambridge: Cambridge University Press, 2001 |
12 |
García-Luengo J , Marín-Rubio P , Real J . Pullback attractors in V for nonautonomous 2D-Navier-Stokes equations and their tempered behavior. J Differential Equations, 2012, 252, 4333- 4356
doi: 10.1016/j.jde.2012.01.010 |
13 |
García-Luengo J , Marín-Rubio P , Real J . Pullback attractors for three-dimensional nonautonomous Navier-Stokes-Voigt equations. Nonlinearity, 2012, 25, 905- 930
doi: 10.1088/0951-7715/25/4/905 |
14 |
Gu A , Zhou S , Wang Z . Uniform attractor of nonautonomous three component reversible Gray-Scott system. Appl Math Comp, 2013, 219, 8718- 8729
doi: 10.1016/j.amc.2013.02.056 |
15 |
Jia X , Zhao C , Yang X . Global attractor and Kolmogorov entropy of three component reversible Gray-Scott model on infinite lattices. Appl Math Comp, 2012, 218, 9781- 9789
doi: 10.1016/j.amc.2012.03.036 |
16 |
Keener J P . Propagation and its failure in coupled systems of discrete excitable cells. SIAM J Appl Math, 1987, 47, 556- 572
doi: 10.1137/0147038 |
17 |
Kloeden P E , Marín-Rubio P , Real J . Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations. Comm Pure Appl Anal, 2009, 8, 785- 802
doi: 10.3934/cpaa.2009.8.785 |
18 | Ladyzhenskaya O . Attractors for Semigroups and Evolution Equations. Cambridge: Cambridge University Press, 1991 |
19 |
Łukaszewicz G . Pullback attractors and statistical solutions for 2D Navier-Stokes equations. Discrete Cont Dyn Syst B, 2008, 9, 643- 659
doi: 10.3934/dcdsb.2008.9.643 |
20 | Li C , Li D , Ju X . On the forward dynamical behavior of nonautonomous systems. Discrete Cont Dyn Syst B, 2020, 25 (1): 473- 487 |
21 |
Łukaszewicz G , Robinson J C . Invariant measures for nonautonomous dissipative dynamical systems. Discrete Cont Dyn Syst, 2014, 34 (10): 4211- 4222
doi: 10.3934/dcds.2014.34.4211 |
22 |
Łukaszewicz G , Real J , Robinson J C . Invariant measures for dissipative dynamical systems and generalised Banach limits. J Dyn Differential Equations, 2011, 23, 225- 250
doi: 10.1007/s10884-011-9213-6 |
23 |
Mahara H , et al. Three-variable reversible Gray-Scott model. J Chem Phys, 2004, 121, 8968- 8972
doi: 10.1063/1.1803531 |
24 |
Pecora L M , Carroll T L . Synchronization in chaotic systems. Phys Rev Lett, 1990, 64, 821- 824
doi: 10.1103/PhysRevLett.64.821 |
25 | Temam R . Infinite Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer-Verlag, 1988 |
26 | Wang X . Upper-semicontinuity of stationary statistical properties of dissipative systems. Discrete Cont Dyn Syst, 2009, 23, 521- 540 |
27 |
You Y . Dynamics of two-compartment Gray-Scott equations. Nonlinear Anal, 2011, 74, 1969- 1986
doi: 10.1016/j.na.2010.11.004 |
28 | You Y . Dynamics of three-component reversible Gray-Scott model. Discrete Cont Dyn Syst B, 2010, 14 (4): 1671- 1688 |
29 |
You Y . Global attractor of the Gray-Scott equations. Comm Pure Appl Anal, 2008, 7, 947- 970
doi: 10.3934/cpaa.2008.7.947 |
30 |
Zhao C , Caraballo T . Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations. J Differential Equations, 2019, 266, 7205- 7229
doi: 10.1016/j.jde.2018.11.032 |
31 |
Zhao C , Zhou S . Compact kernel sections for nonautonomous Klein-Gordon-Schrödinger equations on infinite lattices. J Math Anal Appl, 2007, 332, 32- 56
doi: 10.1016/j.jmaa.2006.10.002 |
32 | Zhao C , Xue G , Łukaszewicz G . Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations. Discrete Cont Dyn Syst B, 2018, 23 (9): 4021- 4044 |
33 |
Zhao C , Zhou S . Compact uniform attractors for dissipative lattice dynamical systems with delays. Discrete Cont Dyn Syst, 2008, 21 (2): 643- 663
doi: 10.3934/dcds.2008.21.643 |
34 |
Zhao X , Zhou S . Kernel sections for processes and nonautonomous lattice systems. Discrete Cont Dyn Syst B, 2008, 9, 763- 785
doi: 10.3934/dcdsb.2008.9.763 |
35 |
Zhou S . Attractors and approximations for lattice dynamical systems. J Differential Equations, 2004, 200, 342- 368
doi: 10.1016/j.jde.2004.02.005 |
36 |
Zhou S . Attractors for first order dissipative lattice dynamical systems. Physica D, 2003, 178, 51- 61
doi: 10.1016/S0167-2789(02)00807-2 |
[1] | 彭小明,郑筱筱,尚亚东. 具有非线性阻尼的Navier-Stokes-Voigt方程的拉回吸引子[J]. 数学物理学报, 2021, 41(2): 357-369. |
[2] | 朱凯旋,谢永钦,周峰,邓习军. 带有时滞项的复Ginzburg-Landau方程的拉回吸引子[J]. 数学物理学报, 2020, 40(5): 1341-1353. |
[3] | 李永军,桑燕苗,赵才地. 一阶格点系统的不变测度与Liouville型方程[J]. 数学物理学报, 2020, 40(2): 328-339. |
[4] | 张韧, 张绍义. 一致可数可加马氏链不变测度的存在性[J]. 数学物理学报, 2018, 38(2): 350-357. |
[5] | 汪永海, 秦玉明. 非经典扩散方程的拉回吸引子在H01(Ω)中的上半连续性[J]. 数学物理学报, 2016, 36(5): 946-957. |
[6] | 杨新光, 赵明霞, 侯伟. 带弱耗散的两维非自治不可压Navier-Stokes方程拉回吸引子的上半连续性[J]. 数学物理学报, 2016, 36(4): 722-739. |
[7] | 王小虎, 李树勇. 无界区域上具线性阻尼的二维 Navier-Stokes 方程的拉回吸引子[J]. 数学物理学报, 2009, 29(4): 873-881. |
[8] | 马东魁, 徐志庭. IFS中一个经典遍历性质的一些推广[J]. 数学物理学报, 2005, 25(4): 503-508. |
[9] | 吴群英. Q过程的μ不变测度——含吸收态情形[J]. 数学物理学报, 2004, 24(1): 16-25. |
[10] | 余旌胡, 杨元启. 统计自相似集与随机不变测度[J]. 数学物理学报, 2002, 22(4): 471-476. |
|