数学物理学报 ›› 2021, Vol. 41 ›› Issue (2): 468-478.

• 论文 • 上一篇    下一篇

一类非线性双曲型方程扩展混合有限元方法的误差估计

王克彦1,王奇生2,*()   

  1. 1 衡阳师范学院数学与统计学院 湖南衡阳 421008
    2 五邑大学数学与计算科学学院 广东江门 529020
  • 收稿日期:2020-02-21 出版日期:2021-04-26 发布日期:2021-04-29
  • 通讯作者: 王奇生 E-mail:282228006@qq.com
  • 基金资助:
    湖南省重点实验室项目基金(2016TP1020);衡阳师范学院科学基金(18D12)

Error Estimates for Expanded Mixed Finite Element Methods for Nonlinear Hyperbolic Equation

Keyan Wang1,Qisheng Wang2,*()   

  1. 1 School of Mathematics and Statistics, Hengyang Normal University, Hunan Hengyang 421008
    2 School of Mathematics and Computational Science, Wuyi University, Guangdong Jiangmen 529020
  • Received:2020-02-21 Online:2021-04-26 Published:2021-04-29
  • Contact: Qisheng Wang E-mail:282228006@qq.com
  • Supported by:
    the Science and Technology Plan Project of Hunan Province(2016TP1020);the Scientific Research Foundation of Hengyang Normal University(18D12)

摘要:

该文针对一类非线性双曲型方程提出了扩展混合有限元方法.首先,建立了半离散扩展混合元格式,获得了半离散扩展混合元解的LL2)先验误差估计.然后,利用有限差分法对时间项进行离散,建立了全离散扩展混合元格式,并给出了全离散格式下的先验误差估计.最后,通过数值算例验证了理论结果.

关键词: 非线性双曲型方程, 扩展混合有限元方法, 误差估计

Abstract:

In this paper, expanded mixed finite element method is developed for a class of nonlinear hyperbolic equation. A priori error estimate for the space discrete scheme is discussed in L(L2) norm. Centered finite differences are used to advance in time, a fully discrete scheme is proposed. Further, a priori error estimate for the fully discrete scheme is established. Finally, a numerical example is presented to confirm the theoretical results.

Key words: Nonlinear hyperbolic equation, Expanded mixed finite element method, Error estimate

中图分类号: 

  • O241.82