1 |
Dehghan M , Hajarian M . An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices. Applied Mathematical Modelling, 2010, 34 (3): 639- 654
doi: 10.1016/j.apm.2009.06.018
|
2 |
Hajarian M . Developing BiCOR and CORS methods for coupled Sylvester-transpose and periodic Sylvester matrix equations. Applied Mathematical Modelling, 2015, 39 (19): 6073- 6084
doi: 10.1016/j.apm.2015.01.026
|
3 |
Hajarian M . Extending the CGLS algorithm for least squares solutions of the generalized Sylvester-transpose matrix equations. Journal of the Franklin Institute, 2016, 353 (5): 1168- 1185
doi: 10.1016/j.jfranklin.2015.05.024
|
4 |
Li S K , Huang T Z . LSQR iterative method for generalized coupled Sylvester matrix equations. Applied Mathematical Modelling, 2012, 36 (8): 3545- 3554
doi: 10.1016/j.apm.2011.10.030
|
5 |
Ding F , Chen T . On iterative solutions of general coupled matrix equations. SIAM Journal on Control and Optimization, 2006, 44 (6): 2269- 2284
doi: 10.1137/S0363012904441350
|
6 |
Bouhamidi A , Jbilou K , Raydan M . Convex constrained optimization for large-scale generalized Sylvester equations. Computational Optimization and Applications, 2011, 48 (2): 233- 253
doi: 10.1007/s10589-009-9253-6
|
7 |
Bouhamidi A , Enkhbat R , Jbilou K . Conditional gradient Tikhonov method for a convex optimization problem in image restoration. Journal of Computational and Applied Mathematics, 2014, 255, 580- 592
doi: 10.1016/j.cam.2013.06.011
|
8 |
Li J F , Li W , Huang R . An efficient method for solving a matrix least squares problem over a matrix inequality constraint. Computational Optimization and Applications, 2016, 63 (2): 393- 423
doi: 10.1007/s10589-015-9783-z
|
9 |
Escalante R , Raydan M . Dykstra's algorithm for a constrained least-squares matrix problem. Numerical Linear Algebra with Applications, 1996, 3 (6): 459- 471
doi: 10.1002/(SICI)1099-1506(199611/12)3:6<459::AID-NLA82>3.0.CO;2-S
|
10 |
Escalante R , Raydan M . Dykstra's algorithm for constrained least-squares rectangular matrix problems. Computers & Mathematics with Applications, 1998, 35 (6): 73- 79
|
11 |
Monsalve M , Moreno J , Escalante R , Raydan M . Selective alternating projections to find the nearest SDD+ matrix. Applied Mathematics and Computation, 2003, 145 (2/3): 205- 220
|
12 |
Li J F , Hu X Y , Zhang L . Dykstra's algorithm for constrained least-squares doubly symmetric matrix problems. Theoretical Computer Science, 2010, 411 (31-33): 2818- 2826
doi: 10.1016/j.tcs.2010.04.011
|
13 |
Li J F , Li W , Vong S W , et al. A Riemannian optimization approach for solving the generalized eigenvalue problem for nonsquare matrix pencils. Journal of Scientific Computing, 2020, 82 (3): 1- 43
doi: 10.1007/s10915-020-01173-5
|
14 |
Meng C , Hu X , Zhang L . The skew-symmetric orthogonal solutions of the matrix equation AX=B. Linear Algebra and its Applications, 2005, 402, 303- 318
doi: 10.1016/j.laa.2005.01.022
|
15 |
Kiers H A . Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems. Computational statistics & data analysis, 2002, 41 (1): 157- 170
|
16 |
Kanamori T , Takeda A . Numerical study of learning algorithms on Stiefel manifold. Computational Management Science, 2014, 11 (4): 319- 340
doi: 10.1007/s10287-013-0181-7
|
17 |
Lai R , Osher S . A splitting method for orthogonality constrained problems. Journal of Scientific Computing, 2014, 58 (2): 431- 449
doi: 10.1007/s10915-013-9740-x
|
18 |
Chen W , Ji H , You Y . An augmented Lagrangian method for 1-regularized optimization problems with orthogonality constraints. SIAM Journal on Scientific Computing, 2016, 38 (4): B570- B592
doi: 10.1137/140988875
|
19 |
Sato H , Iwai T . A Riemannian optimization approach to the matrix singular value decomposition. SIAM Journal on Optimization, 2013, 23 (1): 188- 212
doi: 10.1137/120872887
|
20 |
Zhu X . A Riemannian conjugate gradient method for optimization on the Stiefel manifold. Computational Optimization and Applications, 2017, 67 (1): 73- 110
doi: 10.1007/s10589-016-9883-4
|
21 |
Vandereycken B . Low-rank matrix completion by Riemannian optimization. SIAM Journal on Optimization, 2013, 23 (2): 1214- 1236
doi: 10.1137/110845768
|
22 |
Zhao Z , Jin X Q , Bai Z J . A geometric nonlinear conjugate gradient method for stochastic inverse eigenvalue problems. SIAM Journal on Numerical Analysis, 2016, 54 (4): 2015- 2035
doi: 10.1137/140992576
|
23 |
Yao T T , Bai Z J , Zhao Z , Ching W K . A Riemannian Fletcher-Reeves conjugate gradient method for doubly stochastic inverse eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 2016, 37 (1): 215- 234
doi: 10.1137/15M1023051
|
24 |
Yao T T , Bai Z J , Zhao Z . A Riemannian variant of the Fletcher-Reeves conjugate gradient method for stochastic inverse eigenvalue problems with partial eigendata. Numerical Linear Algebra with Applications, 2019, 26 (2): e2221
doi: 10.1002/nla.2221
|
25 |
Zhang L , Zhou W , Li D H . A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence. IMA Journal of Numerical Analysis, 2006, 26 (4): 629- 640
doi: 10.1093/imanum/drl016
|
26 |
Absil P A , Mahony R , Sepulchre R . Optimization Aalgorithms on Matrix Manifolds. Princeton: Princeton University Press, 2009
|
27 |
Wen Z , Yin W . A feasible method for optimization with orthogonality constraints. Mathematical Programming, 2013, 142 (1/2): 397- 434
|
28 |
Oviedo H , Lara H , Dalmau O . A non-monotone linear search algorithm with mixed direction on Stiefel manifold. Optimization Methods and Software, 2019, 34 (2): 437- 457
doi: 10.1080/10556788.2017.1415337
|