数学物理学报 ›› 2021, Vol. 41 ›› Issue (2): 345-356.

• 论文 • 上一篇    下一篇

可压Navier-Stokes方程解的最高阶导的最佳衰减估计

陈卿()   

  1. 厦门理工学院应用数学学院 福建厦门 361024
  • 收稿日期:2020-03-23 出版日期:2021-04-26 发布日期:2021-04-29
  • 作者简介:陈卿, E-mail: chenqing@xmut.edu.cn
  • 基金资助:
    福建省自然科学基金(2018J01430)

Optimal Time Decay Rate of the Highest Derivative of Solutions to the Compressible Navier-Stokes Equations

Qing Chen()   

  1. School of Applied Mathematics, Xiamen University of Technology, Fujian Xiamen 361024
  • Received:2020-03-23 Online:2021-04-26 Published:2021-04-29
  • Supported by:
    the NSF of Fujian Province(2018J01430)

摘要:

该文研究可压Navier-Stokes方程Cauchy问题光滑解的衰减估计问题.假设初始扰动在$H^l(\mathbb{R}^3)(l\geq3)$中充分小,且属于$\dot{H}^{-s}(\mathbb{R}^3)(0\le s < \frac52)$,通过对解的高低频分解,结合谱分析和能量估计方法,得到解各阶导数的最佳衰减估计结果.

关键词: 可压流, 最佳衰减, 能量方法

Abstract:

In this paper, we are concerned with the time decay rates of smooth solutions to the Cauchy problem for the compressible Navier-Stokes equations. Under the assumptions that the initial data are close to the constant equilibrium state in $H^l(\mathbb{R}^3)$ with $l\geq3$ and belong to $\dot{H}^{-s}(\mathbb{R}^3)$ with $0 \le s < \frac52$, via decomposing the solutions into the low- and high-frequency parts, we establish the optimal convergence rates of all the derivatives of the solution by combining spectral analysis and the energy method.

Key words: Compressible flow, Optimal decay, Energy method

中图分类号: 

  • O175.2