1 |
Duan R J , Liu H X , Ukai S , Yang T . Optimal $L^p$ -$L^q$ convergence rate for the compressible Navier-Stokes equations with potential force. J Differential Equations, 2007, 238, 220- 233
doi: 10.1016/j.jde.2007.03.008
|
2 |
Duan R J , Ukai S , Yang T , Zhao H J . Optimal convergence rate for the compressible Navier-Stokes equations with potential force. Mathematical Models and Methods in Applied Sciences, 2007, 17, 737- 758
doi: 10.1142/S021820250700208X
|
3 |
Grafakos L . Modern Fourier Analysis. New York: Springer, 2009
|
4 |
Guo Y , Wang Y J . Decay of dissipative equations and negative Sobolev spaces. Communications in Partial Differential Equations, 2012, 37, 2165- 2208
doi: 10.1080/03605302.2012.696296
|
5 |
Hu X P , Wu G C . Optimal rates of decay for solutions to the isentropic compressible Navier-Stokes equations with discontinuous initial data and large oscillations. J Differential Equations, 2020, 269 (10): 8132- 8172
doi: 10.1016/j.jde.2020.06.021
|
6 |
Hoff D , Zumbrun K . Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana University Mathematics Journal, 1995, 44, 603- 676
doi: 10.1512/iumj.1995.44.2003
|
7 |
Li H L , Zhang T . Large time behavior of isentropic compressible Navier-Stokes system in $\mathbb{R}.3$. Mathematical Methods in the Applied Sciences, 2011, 34, 670- 682
doi: 10.1002/mma.1391
|
8 |
Ju N . Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Communications in Mathematical Physics, 2004, 251, 365- 376
doi: 10.1007/s00220-004-1062-2
|
9 |
Lemarié-Rieusset P G. Recent Developments in the Navier-Stokes Problem. Boca Raton: Chapman & Hall/CRC, 2002
|
10 |
Matsumura A , Nishida T . The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 1979, 55, 337- 342
|
11 |
Matsumura A , Nishida T . The initial value problem for the equations of motion of viscous and heat-conductive gases. Journal of Mathematics of Kyoto University, 1980, 20, 67- 104
|
12 |
Nirenberg L . On elliptic partial differential equations. Annali della Scuola Normale Superiore di Pisa Classe di Scienze, 1959, 13, 115- 162
|
13 |
Ponce G . Global existence of small solution to a class of nonlinear evolution equations. Nonlinear Analysis: Theory, Methods & Applications, 1985, 9, 339- 418
|
14 |
Stein E M . Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press, 1970
|
15 |
Sohinger V , Strain R M . The Boltzmann equation, Besov spaces, and optimal time decay rates in $R_x^n$. Advances in Mathematics, 2014, 261, 274- 332
doi: 10.1016/j.aim.2014.04.012
|
16 |
Ukai S , Yang T . The Boltzmann equation in the space $L^2\cap L_\beta^\infty$: global and time-periodic solutions. Analysis and Applications, 2006, 4, 263- 310
doi: 10.1142/S0219530506000784
|
17 |
Xu J , Kawashima S . The optimal decay estimates on the framework of Besov spaces for generally dissipative system. Archive for Rational Mechanics and Analysis, 2015, 218, 275- 315
doi: 10.1007/s00205-015-0860-3
|