数学物理学报 ›› 2021, Vol. 41 ›› Issue (2): 357-369.
收稿日期:
2020-03-23
出版日期:
2021-04-26
发布日期:
2021-04-29
通讯作者:
尚亚东
E-mail:gzydshang@126.com
Xiaoming Peng1,Xiaoxiao Zheng2,Yadong Shang3,*()
Received:
2020-03-23
Online:
2021-04-26
Published:
2021-04-29
Contact:
Yadong Shang
E-mail:gzydshang@126.com
摘要:
该文研究具有非线性阻尼的非自治Navier-Stokes-Voigt方程的长时间动力学.首先,利用Galerkin方法证明了整体弱解的存在唯一性.然后,利用能量方法建立解过程的一致渐近紧性,从而证明了拉回吸引子的存在性.此外,还建立了固定有界集族上的吸引子与满足缓增条件的集族上的吸引子之间的关系.
中图分类号:
彭小明,郑筱筱,尚亚东. 具有非线性阻尼的Navier-Stokes-Voigt方程的拉回吸引子[J]. 数学物理学报, 2021, 41(2): 357-369.
Xiaoming Peng,Xiaoxiao Zheng,Yadong Shang. Pullback Attractors for Navier-Stokes-Voigt Equations with Nonlinear Damping[J]. Acta mathematica scientia,Series A, 2021, 41(2): 357-369.
1 | Oskolkov A P . The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers. Zap Nauchn Semin LOMI, 1973, 38, 98- 136 |
2 |
Cao Y , Lunasin E M , Titi E S . Global well-posedness of the three dimensional viscous and inviscid simplified Bardina turbulence models. Commun Math Sci, 2006, 4 (4): 823- 848
doi: 10.4310/CMS.2006.v4.n4.a8 |
3 |
Kalantarov V K , Titi E S . Global attractors and determining modes for the 3D Navier-Stokes-Voigt equations. Chin Ann Math Ser B, 2009, 30 (6): 697- 714
doi: 10.1007/s11401-009-0205-3 |
4 |
Kalantarov V K , Levant B , Titi E S . Gevrey regularity of the global attractor of the 3d Navier-Stokes-Voigt equations. J Nonlinear Sci, 2009, 19 (2): 133- 152
doi: 10.1007/s00332-008-9029-7 |
5 | Yue G C , Zhong C K . Attractors for autonomous and nonautonomous 3d Navier-Stokes-Voigt equations. Discrete Contin Dyn Syst Ser B, 2011, 16 (3): 985- 1002 |
6 |
Dou Y W , Yang X G , Qin Y M . Remarks on uniform attractors for the 3d nonautonomous Navier-Stokes-Voigt equations. Bound Value Probl, 2011, 2011 (1): 49
doi: 10.1186/1687-2770-2011-49 |
7 |
García-luengo J , Marín-Rubio P , Real J . Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt equations. Nonlinearity, 2012, 25 (4): 905- 930
doi: 10.1088/0951-7715/25/4/905 |
8 |
Zelati M C , Gal C G . Singular limits of Voigt models in fluid dynamics. J Math Fluid Mech, 2015, 17 (2): 233- 259
doi: 10.1007/s00021-015-0201-1 |
9 | Yang X G , Li L , Lu Y J . Regularity of uniform attractor for 3d non-autonomous Navier-Stokes-Voigt equation. Appl Math Comput, 2018, 334, 11- 29 |
10 | Niche C J . Decay characterization of solutions to Navier-Stokes-Voigt equations in terms of the initial datum. J Differential Equations, 2016, 260 (8): 4440- 4453 |
11 |
Anh C T , Trang P T . Decay rate of solutions to 3d Navier Stokes Voigt equations in $H^m$ spaces. Appl Math Lett, 2016, 61, 1- 7
doi: 10.1016/j.aml.2016.04.015 |
12 |
Qin Y , Yang X , Liu X . Averaging of a 3d Navier Stokes Voigt equation with singularly oscillating forces. Nonlinear Anal RWA, 2012, 13 (2): 893- 904
doi: 10.1016/j.nonrwa.2011.08.025 |
13 |
Anh C T , Trang P T . On the regularity and convergence of solutions to the 3d Navier Stokes Voigt equations. Comput Math Appl, 2017, 73 (4): 601- 615
doi: 10.1016/j.camwa.2016.12.023 |
14 |
Celebi A O , Kalantarov V K , Polat M . Global attractors for 2d Navier Stokes Voigt equations in an unbounded domain. Appl Anal, 2009, 88 (3): 381- 392
doi: 10.1080/00036810902766682 |
15 |
Anh C T , Trang P T . Pull-back attractors for three-dimensional Navier-Stokes-Voigt equations in some unbounded domains. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2013, 143 (2): 223- 251
doi: 10.1017/S0308210511001491 |
16 |
Cai X J , Jiu Q S . Weak and strong solutions for the incompressible Navier-Stokes equations with damping. J Math Anal Appl, 2008, 343 (2): 799- 809
doi: 10.1016/j.jmaa.2008.01.041 |
17 |
Zhang Z J , Wu X L , Lu M . On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping. J Math Anal Appl, 2011, 377 (1): 414- 419
doi: 10.1016/j.jmaa.2010.11.019 |
18 |
Zhou Y . Regularity and uniqueness for the 3d incompressible Navier Stokes equations with damping. Appl Math Lett, 2012, 25 (11): 1822- 1825
doi: 10.1016/j.aml.2012.02.029 |
19 |
Jia Y , Zhang X W , Dong B Q . The asymptotic behavior of solutions to three-dimensional Navier-Stokes equations with nonlinear damping. Nonlinear Anal RWA, 2011, 12 (3): 1736- 1747
doi: 10.1016/j.nonrwa.2010.11.006 |
20 |
Jiang Z H , Zhu M X . The large time behavior of solutions to 3d Navier-Stokes equations with nonlinear damping. Math Methods Appl Sci, 2012, 35 (1): 97- 102
doi: 10.1002/mma.1540 |
21 |
Song X L , Hou Y R . Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete Contin Dyn Syst, 2011, 31 (1): 239- 252
doi: 10.3934/dcds.2011.31.239 |
22 |
Song X L , Hou Y R . Uniform attractors for three-dimensional Navier-Stokes equations with nonlinear damping. J Math Anal Appl, 2015, 422 (1): 337- 351
doi: 10.1016/j.jmaa.2014.08.044 |
23 | Song X L, Liang F, Wu J H. Pullback ${\cal D}$-attractors for three-dimensional Navier-Stokes equations with nonlinear damping. Bound Value Probl, 2016, Article number: 145 |
24 | Pardo D , José V , Ángel G . Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete Contin Dyn Syst, 2019, 24 (8): 3569- 3590 |
25 | Li F , You B . Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete Contin Dyn Syst, 2020, 25 (1): 55- 80 |
26 |
Liu H , Lin L , Sun C F , Xiao Q K . The exponential behavior and stabilizability of the stochastic 3d Navier-Stokes equations with damping. Reviews in Mathematical Physics, 2019, 31 (7): 1950023
doi: 10.1142/S0129055X19500235 |
27 |
Di Plinio F , Giorgini A , Pata V , Temam R . Navier-Stokes-Voigt equations with memory in 3d lacking instantaneous kinematic viscosity. J Nonlinear Sci, 2018, 28, 653- 686
doi: 10.1007/s00332-017-9422-1 |
28 |
Wang X Q , Qin Y M . Three-dimensional Navier-Stokes-Voigt equation with a memory and the Brinkman-Forchheimer damping term. Math Methods Appl Sci, 2019,
doi: 10.1002/mma.5710 |
29 |
Lv W B , Lu L Q , Wu S H . Decay characterization of the solutions to the Navier-Stokes-Voigt equations with damping. J Math Phys, 2020, 61, 081508
doi: 10.1063/1.5096875 |
30 | Rosa R . The global attractor for the 2d Navier-Stokes flow on some unbounded domains. Nonlinear Anal, 2001, 32 (1): 71- 85 |
31 |
Marín-Rubio P , Real J . On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems. Nonlinear Anal, 2009, 71 (9): 3956- 3963
doi: 10.1016/j.na.2009.02.065 |
32 |
García-Luengo J , Marín-Rubio P , Real J . Pullback attractors in V for non-autonomous 2d-Navier-Stokes equations and their tempered behaviour. J Differential Equations, 2012, 252 (8): 4333- 4356
doi: 10.1016/j.jde.2012.01.010 |
33 | Lions J L. Quelques Méthodes de Résolution des Problémes aux Limites Nonlineaires. Paris: Dunod, 1969 |
[1] | 肖巧懿, 李春秋. 离散的三分量可逆Gray-Scott模型的不变Borel概率测度[J]. 数学物理学报, 2021, 41(2): 523-537. |
[2] | 西宣宣,侯咪咪,周先锋. 非自治Caputo分数阶发展方程弱解的适定性与不变集[J]. 数学物理学报, 2021, 41(1): 149-165. |
[3] | 朱凯旋,谢永钦,周峰,邓习军. 带有时滞项的复Ginzburg-Landau方程的拉回吸引子[J]. 数学物理学报, 2020, 40(5): 1341-1353. |
[4] | 韩宗飞,周盛凡. R3上带乘法噪声的非自治随机FitzHugh-Nagumo系统的随机指数吸引子[J]. 数学物理学报, 2020, 40(3): 756-783. |
[5] | 李永军,桑燕苗,赵才地. 一阶格点系统的不变测度与Liouville型方程[J]. 数学物理学报, 2020, 40(2): 328-339. |
[6] | 朱波,刘立山. 带瞬时脉冲的分数阶非自制发展方程解的存在唯一性[J]. 数学物理学报, 2019, 39(1): 105-113. |
[7] | 卢天秀, 辛邦颖, 毛巍. 关于非自治离散系统中敏感性的一些结论[J]. 数学物理学报, 2017, 37(5): 808-813. |
[8] | 汪永海, 秦玉明. 非经典扩散方程的拉回吸引子在H01(Ω)中的上半连续性[J]. 数学物理学报, 2016, 36(5): 946-957. |
[9] | 杨新光, 赵明霞, 侯伟. 带弱耗散的两维非自治不可压Navier-Stokes方程拉回吸引子的上半连续性[J]. 数学物理学报, 2016, 36(4): 722-739. |
[10] | 卢天秀, 朱培勇, 吴新星. 非自治离散系统的分布混沌性[J]. 数学物理学报, 2015, 35(3): 558-566. |
[11] | 朱旭生, 李芳娥. 带非线性阻尼项的三维可压缩欧拉方程组的整体解[J]. 数学物理学报, 2014, 34(5): 1111-1122. |
[12] | 赵才地. 二维Navier-Stokes 方程组的H1 一致吸引子[J]. 数学物理学报, 2011, 31(5): 1416-1430. |
[13] | 王小虎, 李树勇. 无界区域上具线性阻尼的二维 Navier-Stokes 方程的拉回吸引子[J]. 数学物理学报, 2009, 29(4): 873-881. |
[14] | 李俊平; 李民. 随机非自治Logistic模型[J]. 数学物理学报, 2008, 28(5): 863-869. |
[15] | 徐文雄;张太雷;徐宗本. 一类具有多时滞捕食-被捕食系统正周期解的存在性[J]. 数学物理学报, 2008, 28(1): 39-045. |
|