数学物理学报 ›› 2021, Vol. 41 ›› Issue (1): 91-99.

• 论文 • 上一篇    下一篇

关于Boussinesq方程组无粘极限的研究

郭连红()   

  1. 广州番禺职业技术学院公共课教学部 广州 511483
  • 收稿日期:2020-01-07 出版日期:2021-02-26 发布日期:2021-01-29
  • 作者简介:郭连红, E-mail: guoat164@163.com
  • 基金资助:
    广东普通高校重点科研(自然科学)(2019KZDXM042)

Research on the Inviscid Limit for Boussinesq Equations

Lianhong Guo()   

  1. Public Course Teaching Department, Guangzhou Panyu Polytechnic, Guangzhou 511483
  • Received:2020-01-07 Online:2021-02-26 Published:2021-01-29
  • Supported by:
    the Guangdong Key Research in Common Colleges and Universities (Natural Science)(2019KZDXM042)

摘要:

该文主要研究三维Boussinesq方程组的无粘极限问题.为了克服Boussinesq方程组中温度和速度耦合项产生的困难,带温度的涡量方程需要与Slip边界条件匹配,通过计算得到温度更高阶的边界条件,结合迹定理和能量估计,最后得到了三维粘性Boussinesq方程组初边值问题强解的存在唯一性,并在平坦区域上得到了强解的收敛率.

关键词: Boussinesq方程组, Slip边界条件, 无粘极限

Abstract:

In this paper, we investigate the inviscid limit of the 3D viscous Boussinesq equations with slip boundary condition. We establish the local well-posedness of the strong solutions for initial boundary value problems for such systems. Furthermore, we establish the vanishing viscosity limit process and obtain a strong rate of convergence as the boundary of the domain is flat. In addition, the key observation is that the boundary term as $θ$ can be estimated by the part of high order of energy through the trace formula.

Key words: Boussinesq equations, Vanishing viscosity limit, Slip boundary conditions

中图分类号: 

  • O175.2