数学物理学报 ›› 2021, Vol. 41 ›› Issue (1): 100-125.

• 论文 • 上一篇    下一篇

带真空无磁扩散不可压磁流体方程柯西问题的局部适定性

陈明涛1,苏文火2,*(),臧爱彬2   

  1. 1 山东大学(威海)数学与统计学院 山东威海 264209
    2 宜春学院应用数学研究中心 江西宜春 336000
  • 收稿日期:2019-12-12 出版日期:2021-02-26 发布日期:2021-01-29
  • 通讯作者: 苏文火 E-mail:suwenhuo@jxycu.edu.cn
  • 基金资助:
    国家自然科学基金(11801495);国家自然科学基金(11771382);江西省教育厅科技项目(GJJ201629);山东省自然科学基金(ZR2019MA050)

Local well-Posedness for the Cauchy Problem of 2D Nonhomogeneous Incompressible and Non-Resistive MHD Equations with Vacuum

Mingtao Chen1,Wenhuo Su2,*(),Aibin Zang2   

  1. 1 School of Mathematics and Statistics, Shandong University, Shandong Weihai 264209
    2 Center of Applied Mathematics, Yichun University, Jiangxi Yichun 336000
  • Received:2019-12-12 Online:2021-02-26 Published:2021-01-29
  • Contact: Wenhuo Su E-mail:suwenhuo@jxycu.edu.cn
  • Supported by:
    the NSFC(11801495);the NSFC(11771382);the Science and Technology Project of Education Department in Jiangxi Province(GJJ201629);the NSF of Shandong Province(ZR2019MA050)

摘要:

该文讨论了在真空远场的密度条件下,二维不可压零磁耗散磁流体力学方程组柯西问题的局部适定性.在初始密度和磁场具有一定的衰减性时,证明了磁流体方程具有唯一的局部强解.当初值满足兼容性条件和适当的正则性条件时,该强解就是经典解.除此之外,文中还给出了一个仅与磁场有关的爆破准则.

关键词: 2D无磁扩散MHD方程, 真空, 经典解, 爆破准则

Abstract:

In this paper, we investigate the Cauchy problem of the nonhomogeneous incompressible and non-resistive MHD on ${\Bbb R}$2 with vacuum as far field density and prove that the 2D Cauchy problem has a unique local strong solution provided that the initial density and magnetic field decay not too slow at infinity. Furthermore, if the initial data satisfy some additional regularity and compatibility conditions, the strong solution becomes a classical one. Moreover, we also establish a blowup criterion which depends only on the Magnetic fields.

Key words: 2D non-resistive MHD equations, Vacuum, Classical solutions, Blowup criterion

中图分类号: 

  • O175.2