Bifurcation of Periodic Orbits of an n-Dimensional Piecewise Smooth Differential System
Jihua Yang1,*(),Erli Zhang2
1 School of Mathematics and Computer Science, Ningxia Normal University, Ningxia Guyuan 756000 2 School of Information Engineering, Zhengzhou Institute of Finance and Economics, Zhengzhou 450001
the Higher Education Science and Technology Program of Ningxia(NGY2020074);the NSFC(11701306);the NSF of Ningxia(2019AAC03247);the Construction of First-class Disciplines of Higher Education of Ningxia (pedagogy)(NXYLXK2017B11);the Training Plan for Young Scholar of Higher Education of Henan Province(2017GGJS202);the Training Plan for Young Scholar of Higher Education of Henan Province(2016GGJS-190);the Key Program of Higher Education of Henan Province(19A110033);the Key Program of Higher Education of Henan Province(19B110014)
Liu X , Han M . Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems. Internat J Bifur Chaos Appl Sci Engrg, 2010, 20, 1379- 1390
doi: 10.1142/S021812741002654X
2
Liang F , Han M , Romanovski V . Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop. Nonlinear Anal, 2012, 75, 4355- 4374
doi: 10.1016/j.na.2012.03.022
3
Xiong Y . Limit cycle bifurcations by perturbing non-smooth Hamiltonian systems with 4 switching lines via multiple parameters. Nonlinear Analysis: Real World Applications, 2018, 41, 384- 400
doi: 10.1016/j.nonrwa.2017.10.020
4
Li S , Liu C . A linear estimate of the number of limit cycles for some planar piecewise smooth quadratic differential system. J Math Anal Appl, 2015, 428, 1354- 1367
doi: 10.1016/j.jmaa.2015.03.074
5
Yang J , Zhao L . Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete and Continuous Dynamical Systems Series B, 2017, 22, 2417- 2425
doi: 10.3934/dcdsb.2017123
6
Han M , Sheng L . Bifurcation of limit cycles in piecewise smooth systems via Melnikov function. J Appl Anal Comput, 2015, 5, 809- 815
7
Llibre J , Mereu A , Novaes D . Averaging theory for discontinuous piecewise differential systems. J Differential Equations, 2015, 258, 4007- 4032
doi: 10.1016/j.jde.2015.01.022
8
Han M . On the maximum number of periodic solutions of piecewise smooth periodic equations by average method. J Appl Anal Comput, 2017, 7, 788- 794
9
Yang J , Zhao L . Bounding the number of limit cycles of discontinuous differential systems by using Picard-Fuchs equations. J Differential Equations, 2018, 264, 5734- 5757
doi: 10.1016/j.jde.2018.01.017
10
Llibre J , Makhlouf A . Bifurcation of limit cycles from a two-dimensional center inside $\mathbb{R} ^n$. Nonlinear Analysis, 2010, 72, 1387- 1392
doi: 10.1016/j.na.2009.08.022
11
Barreira L , Llibre J , Valls C . Bifurcation of limit cycles from a 4-dimensional center in $\mathbb{R} ^m$ in resonance $1:N$. J Math Anal Appl, 2012, 389, 754- 768
doi: 10.1016/j.jmaa.2011.12.018
12
Llibre J , Teixeira M , Zeli I . Birth of limit cycles for a class of continuous and discontinuous differential systems in $(d+2)$-dimension. Dynamical Systems, 2016, 31 (3): 237- 250
13
Tian H , Han M . Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems. J Differential Equations, 2017, 263, 7448- 7474
doi: 10.1016/j.jde.2017.08.011
14
Han M , Sun H , Balanov Z . Upper estimates for the number of periodic solutions to multi-dimensional systems. J Differential Equations, 2019, 266, 8281- 8293
doi: 10.1016/j.jde.2018.12.034