1 |
Podlubny I . Fractional Differential Equations. San Diego: Academic Press, 1999
|
2 |
Oldham K B , Spanier J . The Fractional Calculus. New York: Academic Press, 1974
|
3 |
Samko S G , Killbas A A , Marichev O I . Fractional Integrals and Derivatives:Theory and Applications. Amsterdam: Gordon and Breach Science Publisher, 1993
|
4 |
Kilbas A A , Srivastava H M , Trujillo J J . Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier Science, 2006
|
5 |
Miller K S , Ross B . An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: John Wiley and Sons, 1993
|
6 |
Diethelm V . The Analysis of Fractional Differential Equations. New York: Springer, 2010
|
7 |
Lakshmikantham V , Leela S , Vasundhara D J . Theory of Fractional Dynamic Systems. Cambridge: Cambridge Academic Publishers, 2009
|
8 |
Li Y , Chen Y Q , Podlubny I . Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 2009, 45, 1965- 1969
|
9 |
Li Y , Chen Y Q , Podlubny I . Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl, 2010, 59, 1810- 1821
|
10 |
Liu S , Li X Y , Jiang W , Zhou X F . Mittag-Leffler stability of nonlinear fractional neutral singular systems. Commun Nonlinear Sci Numer Simul, 2012, 17, 3961- 3966
|
11 |
Liu S , Jiang W , Li X Y , Zhou X F . Lyapunov stability analysis of fractional nonlinear systems. Appl Math Lett, 2016, 51, 13- 19
|
12 |
Yu J M , Hu H , Zhou S B , Lin X R . Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems. Automatica, 2013, 49, 1798- 1803
|
13 |
Li H L , Hu C , Jiang Y L , et al. Global Mittag-Leffler stability for a coupled system of fractional-order differential equations on network with feedback controls. Neurocomputing, 2016, 214, 233- 241
|
14 |
Ren F L , Cao F , Cao J D . Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks. Neurocomputing, 2015, 160, 185- 190
|
15 |
Wan L G , Wu A L . Multiple Mittag-Leffler stability and locally asymptotical ω-periodicity for fractionalorder neural networks. Neurocomputing, 2018, 315, 272- 282
|
16 |
Zhang X X , Niu P F , Ma Y P , et al. Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition. Neural Networks, 2017, 94, 67- 75
|
17 |
Wu H Q , Zhang X X , Xue S H , et al. LMI conditions to global Mittag-Leffler stability of fractional-order neural networks with impulses. Neurocomputing, 2016, 193, 148- 154
|
18 |
Yang X J , Li C D , Song Q K , et al. Mittag-Leffler stability analysis on variable-time impulsive fractionalorder neural networks. Neurocomputing, 2016, 207, 276- 286
|
19 |
Ivanka S . Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dyn, 2014, 77, 1251- 1260
|
20 |
Yang X J , Li C D , Huang T W , Song Q K . Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses. Appl Math Comput, 2017, 293, 416- 422
|
21 |
Arena P , Fortuna L , Porto L . Chaotic behavior in noninteger-order cellular neural networks. Physical Review E, 2000, 61 (1): 776- 781
|
22 |
Kaslik E , Sivasundaram S . Nonlinear dynamics and chaos in fractional-order neural networks. Neural Networks, 2012, 32, 245- 256
|
23 |
Huang X , Zhao Z , Wang Z , Li Y X . Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing, 2012, 94, 13- 21
|
24 |
Ben M A , Boucenna D , Hammami M A . Existence and stability results for generalized fractional differential equations. Acta Mathematica Scientia, 2020, 40B (1): 141- 154
|
25 |
王春. 一类分数阶系统的稳定性和Laplace变换. 数学物理学报, 2019, 39A (1): 49- 58
|
|
Wang C . Stability and Laplace transformation of a class of fractional systems. Acta Math Sci, 2019, 39A (1): 49- 58
|