数学物理学报 ›› 2020, Vol. 40 ›› Issue (3): 796-810.

• 论文 • 上一篇    下一篇

双分数布朗运动重整化自相交局部时的光滑性

桑利恒1,2,陈振龙1,*(),郝晓珍1   

  1. 1 浙江工商大学统计与数学学院 杭州 310018
    2 滁州学院数学与金融学院 安徽滁州 239000
  • 收稿日期:2019-04-01 出版日期:2020-06-26 发布日期:2020-07-15
  • 通讯作者: 陈振龙 E-mail:zlchen@zjsu.edu.cn
  • 基金资助:
    国家自然科学基金(11971432);教育部人文社会科学研究规划基金(18YJA910001);浙江省教育厅科研基金(Y201942401);浙江省一流学科A类(浙江工商大学统计学)

Smoothness for the Renormalized Self-Intersection Local Time of Bifractional Brownian Motion

Liheng Sang1,2,Zhenlong Chen1,*(),Xiaozhen Hao1   

  1. 1 School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018
    2 School of Mathematics and Finance, Chuzhou University, Anhui Chuzhou 239000
  • Received:2019-04-01 Online:2020-06-26 Published:2020-07-15
  • Contact: Zhenlong Chen E-mail:zlchen@zjsu.edu.cn
  • Supported by:
    the NSFC(11971432);the Humanities and Social Sciences Research Project of Ministry of Education(18YJA910001);the Foundation of Zhejiang Educational Committee(Y201942401);the First Class Discipline of Zhejiang-A (Zhejiang Gongshang University-Statistics)

摘要:

BHK={BHKt),t ≥ 0}是取值于Rd中Hurst指数为H∈(0,1)和K∈(0,1]的双分数布朗运动.它是分数布朗运动的一个推广.该文考虑了BHK重整化自相交局部时的光滑性问题.主要运用Malliavin分析中混沌展开的方法,在Meyer-Watanabe意义下,得到了BHK重整化自相交局部时是光滑的.该文结论推广了分数布朗运动的相关结果.

关键词: 双分数布朗运动, 重整化自相交局部时, 混沌展开, 光滑性

Abstract:

Let BH, K={BH, K(t), t ≥ 0 } be a bifractional Brownian motion in Rd with Hurst indexes H ∈ (0, 1) and K ∈ (0, 1]. This process constitutes a natural generalization of fractional Brownian motion(which is obtained for K=1). In this paper, we research the smoothness of the renormalized self-intersection local time of BH, K. By the chaos expansion method of Malliavin analysis, we obtain the smoothness of the renormalized self-intersection local time of BH, K in the sense of Meyer-Watanabe. And our result generalizes that of fractional Brownian motion.

Key words: Bifractional Brownian motion, Renormalized self-intersection local time, Chaos expansion, Smoothness

中图分类号: 

  • O211.6