1 |
罗李平, 罗振国, 邓义华. 脉冲扰动对非线性时滞双曲型分布参数系统振动的影响. 数学物理学报, 2018, 38A (2): 313- 321
|
2 |
马晴霞, 刘安平. 脉冲时滞中立双曲型方程组的振动性. 数学物理学报, 2016, 36A (3): 462- 472
|
3 |
罗李平, 罗振国, 杨柳. 具脉冲扰动和时滞效应的拟线性抛物系统的(强)振动分析. 应用数学学报, 2016, 39 (1): 21- 30
|
4 |
Ma Q X , Liu A P . Oscillation criteria of neutral type impulsive hyperbolic equations. Acta Mathematica Scientia, 2014, 34B (6): 1845- 1853
|
5 |
Ning X Q , You S J . Oscillation of the systems of impulsive hyperbolic partial differential equations. Journal of Chemical and Pharmaceutical Research, 2014, 6 (7): 1370- 1377
|
6 |
罗李平, 曾云辉, 罗振国. 具脉冲和时滞效应的拟线性双曲系统的振动性定理. 应用数学学报, 2014, 37 (5): 824- 834
|
7 |
Yang J C , Liu A P , Liu G J . Oscillation of solutions to neutral nonlinear impulsive hyperbolic equations with several delays. Electronic Journal of Differential Equations, 2013, 2013 (27): 1- 10
|
8 |
罗李平, 罗振国, 曾云辉. 基于脉冲控制的非线性时滞双曲系统的振动分析. 系统科学与数学, 2013, 33 (9): 1024- 1032
|
9 |
Liu A P , Liu T , Zou M . Oscillation of nonlinear impulsive parabolic differential equations of neutral type. Rocky Mountain Journal of Mathematics, 2011, 41 (3): 833- 850
|
10 |
罗李平, 杨柳. 具高阶Laplace算子的非线性脉冲时滞双曲型方程的振动判据. 系统科学与数学, 2009, 29 (12): 1672- 1678
|
11 |
Gilbarg D , Trudinger N S . Elliptic Partial Equations of Second Order. Berlin: Springer-Verlag, 1977
|
12 |
Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations. Singapore: World Scientific Publishing Co Pte Ltd, 1989
|