数学物理学报 ›› 2020, Vol. 40 ›› Issue (2): 452-459.
收稿日期:
2017-09-20
出版日期:
2020-04-26
发布日期:
2020-05-21
通讯作者:
欧阳成
E-mail:oyc@zjhu.edu.cn
基金资助:
Cheng Ouyang1,*(),Weigang Wang2,Jiaqi Mo3
Received:
2017-09-20
Online:
2020-04-26
Published:
2020-05-21
Contact:
Cheng Ouyang
E-mail:oyc@zjhu.edu.cn
Supported by:
摘要:
研究了一类分数阶广义非线性扰动热波方程.首先用奇异慑动方法,求出了分数阶广义非线性扰动热波方程初始边值问题的任意次近似解析解.然后利用泛函分析不动点定理证明了它的一致有效性,最后简述了它的物理意义.求得的近似解析解,弥补了单纯用数值方法求模拟解的不足.
中图分类号:
欧阳成,汪维刚,莫嘉琪. 分数阶广义扰动热波方程[J]. 数学物理学报, 2020, 40(2): 452-459.
Cheng Ouyang,Weigang Wang,Jiaqi Mo. The Fractional Generalized Disturbed Thermal Wave Equation[J]. Acta mathematica scientia,Series A, 2020, 40(2): 452-459.
1 | Podlubny I. Fractional Differential Equations. London:Academic Press, 1999 |
2 | Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity:An Introduction to Mathematical Models. London:Imperial College Press, 2010 |
3 |
Rajneesh K , Vandana G . Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative. Chin Phys B, 2013, 22 (7): 074601
doi: 10.1088/1674-1056/22/7/074601 |
4 | 辛宝贵, 陈通, 刘艳芹. 一类分数阶混沌金融系统的复杂性演化研究. 物理学报, 2011, 60 (4): 048901 |
Xin B G , Chen T , Liu Y Q . Complexity evolvement of a chaotic fractional-orderfinancial system. Acta Phys Sin, 2011, 60 (4): 048901 | |
5 |
蔚涛, 罗懋康, 华云. 分数阶质量涨落谐振子的共振行为. 物理学报, 2013, 62 (21): 210503
doi: 10.7498/aps.62.210503 |
Wei T , Luo M K , Hua Y . The resonant behavior of fractional harmonic oscillator with fluctuating mass. Acta Phys Sin, 2013, 62 (21): 210503
doi: 10.7498/aps.62.210503 |
|
6 |
范文萍, 蒋晓芸. 带有分数阶热流条件的时间分数阶热波方程及其参数估计问题. 物理学报, 2014, 63 (14): 140202
doi: 10.7498/aps.63.140202 |
Fan W P , Jiang X Y . Parameters estimation for a one-dimensional time fractional thermal wave equation with fractional heat flux conditions. Acta Phys Sin, 2014, 63 (14): 140202
doi: 10.7498/aps.63.140202 |
|
7 |
Yu Y J , Wang Z H . A fractional-order phase-locked loop with time-delay and its Hopf bifurcation. Chin Phys Lett, 2013, 30 (11): 110201
doi: 10.1088/0256-307X/30/11/110201 |
8 |
Faye L , Frenod E , Seck D . Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment. Discrete Contin Dyn Syst, 2011, 29 (3): 1001- 1030
doi: 10.3934/dcds.2011.29.1001 |
9 |
Samusenko P F . Asymptotic integration of degenerate singularly perturbed systems of parabolic partial differential equations. J Math Sci, 2013, 189 (5): 834- 847
doi: 10.1007/s10958-013-1223-y |
10 |
Ge H X , Cheng R J . A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation. Chin Phys B, 2014, 23 (4): 040203
doi: 10.1088/1674-1056/23/4/040203 |
11 | de Jager E M, Jiang F R. The Theory of Singular Perturbation. Amsterdam:North-Holland Publishing Co, 1996 |
12 | Barbu L, Morosanu G. Singularly Perturbed Boundary-Value Problem. Basel:Birkhauserm Verlag AG, 2007 |
13 |
韩祥临, 汪维刚, 莫嘉琪. 流行性病毒传播生态动力学系统. 数学物理学报, 2019, 39 (1): 200- 208
doi: 10.3969/j.issn.1003-3998.2019.01.019 |
Han X L , Wang W G , Mo J Q . Bionomics dynamic system for epidemic virus transmission. Acta Math Sci, 2019, 39 (1): 200- 208
doi: 10.3969/j.issn.1003-3998.2019.01.019 |
|
14 |
韩祥临, 汪维刚, 莫嘉琪. 一类非线性微分-积分时滞反应扩散系统的广义解. 数学物理学报, 2019, 39 (2): 297- 306
doi: 10.3969/j.issn.1003-3998.2019.02.009 |
Han X L , Wang W G , Mo J Q . Generalized solution to a class of nonlinear differential-integral time delay reaction diffusion system. Acta Math Sci, 2019, 39 (2): 297- 306
doi: 10.3969/j.issn.1003-3998.2019.02.009 |
|
15 | Mo J Q . Singular perturbation for a class of nonlinear reaction diffusion systems. Science in China, 1989, 32 (11): 1306- 1315 |
16 |
Mo J Q . Singularly perturbed reaction diffusion problem for nonlinear boundary condition with two parameters. Chin Phys, 2010, 19 (1): 010203
doi: 10.1088/1674-1056/19/1/010203 |
17 | Mo J Q , Yao J A , Tang R R . Approximate analytic solution of solitary wave for a class of nonlinear disturbed long-wave system. Comm Theor Phys, 2010, 54 (1): 27- 30 |
18 |
Mo J Q , Lin W T . Generalized variation iteration solution of an atmosphere-ocean oscillator model for global climateplexity. J Sys Sci Complexity, 2011, 24 (2): 271- 276
doi: 10.1007/s11424-011-7153-1 |
19 |
Mo J Q , Lin W T , Lin Y H . Asymptotic solution for the Elñino time delay sea-air oscillator model. Chin Phys B, 2011, 20 (7): 070205
doi: 10.1088/1674-1056/20/7/070205 |
20 |
Mo J Q . Homotopiv mapping solving method for gain fluency of a laser pulse amplifier. Science in China Ser G, 2009, 52 (7): 1007- 1010
doi: 10.1007/s11433-009-0146-6 |
21 |
欧阳成, 姚静荪, 石兰芳, 莫嘉琪. 一类尘埃等离子体孤子解. 物理学报, 2014, 63 (11): 110203
doi: 10.7498/aps.63.110203 |
Ouyang C , Yao J S , Shi L F , Mo J Q . Solitary wave solution for a class of dusty plasma. Acta Phys Sin, 2014, 63 (11): 110203
doi: 10.7498/aps.63.110203 |
|
22 | 欧阳成, 陈贤峰, 莫嘉琪. 广义扰动Nizhnik-Novikov-Veselov系统的孤波解的孤波解. 系统科学与数学, 2017, 37 (3): 908- 917 |
Ouyang C , Chen X F , Mo J Q . The solutions to solitary wave for generalized disturbed Nizhnik-Novikov-Vedelov system. J Sys Sci Math, 2017, 37 (3): 908- 917 | |
23 | 欧阳成, 姚静荪, 石兰芳, 莫嘉琪. 一类广义鸭轨迹系统轨线的构造. 物理学报, 2012, 61 (3): 030202 |
Ouyang C , Yao J S , Shi L F , Mo J Q . Constructing path curve for a class of generalized phase tracks of canard system. Acta Phys Sin, 2012, 61 (3): 030202 | |
24 | 欧阳成, 林万涛, 程荣军, 莫嘉琪. 一类厄尔尼诺海-气时滞振子的渐近解. 物理学报, 2013, 62 (6): 060201 |
Ouyang C , Lin W T , Cheng R J , Mo J Q . A class of asymptotic solution of sea-air time delay oscillator for the Elñino-southern oscillation mechanism. Acta Phys Sin, 2013, 62 (6): 060201 | |
25 |
Ouyang C , Cheng L H , Mo J . Solving a class of burning disturbed problem with shock layer. Chin Phy B, 2012, 21 (5): 050203
doi: 10.1088/1674-1056/21/5/050203 |
26 | Wang W G , Shi L F , Han X L , Mo J Q . Singular perturbation problem for reaction diffusion tiime delay equation. Chin J Engineering Math, 2015, 32 (2): 291- 297 |
27 | Wang W G , Shi J R , Shi L F , Mo J Q . The singularly perturbed solution of nonlinear nonlocal equation for higher order. J Nankai Univ, 2014, 47 (1): 13- 18 |
28 |
汪维刚, 林万涛, 石兰芳, 莫嘉琪. 非线性扰动时滞长波系统孤波近似解. 物理学报, 2014, 63 (11): 110204
doi: 10.7498/aps.63.110204 |
Wang W G , Lin W T , Shi L F , Mo J Q . Approximate solution of solitary wave for nonlinear-disturbed time delay long-wave system. Acta Phys Sin, 2014, 63 (11): 110204
doi: 10.7498/aps.63.110204 |
|
29 | 汪维刚, 石兰芳, 韩祥临, 莫嘉琪. 捕食-被捕食微分方程种群模型的研究综述. 武汉大学学报, 2015, 61 (4): 299- 307 |
Wang W G , Shi J R , Han X L , Mo J Q . The research summarizes to population model of prey-predator differential equations. J Wuhan Univ, 2015, 61 (4): 299- 307 | |
30 | Wang W G , Shi L F , Han X L , Mo J Q . Singular perturbation problem for reaction diffusion time delay equation. Chin J Engineering Math, 2015, 32 (2): 291- 297 |
31 | Wang W G , Shi L F , Xu Y H , Mo J Q . Generalized solution of the singularly perturbed boundary value problems for semilinear elliptic equation of higher order with two parameters. J Nankai Univ, 2014, 47 (2): 47- 81 |
32 | Wang W G , Shi J R , Shi L F , Mo J Q . The singularly perturbed solution of nonlinear nonlocal equation for higher order. J Nankai Univ, 2014, 47 (1): 13- 18 |
[1] | 巩全壹,么焕民. 再生核移位勒让德基函数法求解分数阶微分方程[J]. 数学物理学报, 2020, 40(2): 441-451. |
[2] | 刘玉记. 含三个Riemann-Liouville分数阶导数的脉冲Langevin型方程的边值问题的可解性[J]. 数学物理学报, 2020, 40(1): 103-131. |
[3] | 徐家发. 具有半正非线性项的分数阶差分方程组边值问题的正解[J]. 数学物理学报, 2020, 40(1): 132-145. |
[4] | 朱波,韩宝燕,刘立山. 一类混合型分数阶半线性积分-微分方程解的存在性[J]. 数学物理学报, 2019, 39(6): 1334-1341. |
[5] | 张秋月. 带有分数阶耗散的三维广义Oldroyd-B模型的整体正则性[J]. 数学物理学报, 2019, 39(5): 1125-1135. |
[6] | 史艳华,张亚东,王芬玲,赵艳敏,王萍莉. 时间分数阶扩散方程线性三角形元的高精度分析[J]. 数学物理学报, 2019, 39(4): 839-850. |
[7] | 陈华雄,王岩岩,倪明康. 具有快慢层的非光滑奇异摄动问题的空间对照结构[J]. 数学物理学报, 2019, 39(4): 865-874. |
[8] | 王春. 一类分数阶系统的稳定性和Laplace变换[J]. 数学物理学报, 2019, 39(1): 49-58. |
[9] | 朱波,刘立山. 带瞬时脉冲的分数阶非自制发展方程解的存在唯一性[J]. 数学物理学报, 2019, 39(1): 105-113. |
[10] | 赵雅迪, 吴立飞, 杨晓忠, 孙淑珍. 时间分数阶慢扩散方程的一类有效差分方法[J]. 数学物理学报, 2018, 38(6): 1122-1134. |
[11] | 贠永震,苏有慧,胡卫敏. 一类具有p-Laplacian算子的分数阶微分方程反周期边值问题解的存在唯一性[J]. 数学物理学报, 2018, 38(6): 1162-1172. |
[12] | 孙文兵,刘琼. 分形空间上广义凸函数的新Simpson型不等式及应用[J]. 数学物理学报, 2018, 38(6): 1058-1066. |
[13] | 王文波,李全清. 变号深阱位势分数阶Schrödinger方程非平凡解的存在性和集中性[J]. 数学物理学报, 2018, 38(5): 893-902. |
[14] | 王俊,王天璐,温艳华,周先锋. N维非线性时滞分数阶微分方程初值问题的全局解[J]. 数学物理学报, 2018, 38(5): 903-910. |
[15] | 王惠文, 曾红娟, 李芳. 多基点分数阶微分方程脉冲边值问题解的存在性[J]. 数学物理学报, 2018, 38(4): 697-715. |
|