数学物理学报 ›› 2020, Vol. 40 ›› Issue (2): 441-451.
收稿日期:
2018-07-16
出版日期:
2020-04-26
发布日期:
2020-05-21
通讯作者:
么焕民
E-mail:gqyfighting@163.com;yhmhsd@126.com
作者简介:
巩全壹, E-mail:基金资助:
Received:
2018-07-16
Online:
2020-04-26
Published:
2020-05-21
Contact:
Huanmin Yao
E-mail:gqyfighting@163.com;yhmhsd@126.com
Supported by:
摘要:
该文以再生核理论为基础,用移位Legendre多项式作为基函数构造了一个新的再生核空间,并给出了该空间下的再生核函数.与经典的再生核函数有所不同的是该空间下的再生核函数不再是分段函数,因此可以减小分数阶算子作用在核函数上时的计算量,使近似解更为精确.数值算例表明该方法的有效性.
中图分类号:
巩全壹,么焕民. 再生核移位勒让德基函数法求解分数阶微分方程[J]. 数学物理学报, 2020, 40(2): 441-451.
Quanyi Gong,Huanmin Yao. Reproducing Kernel Shifted Legendre Basis Function Method for Solving the Fractional Differential Equations[J]. Acta mathematica scientia,Series A, 2020, 40(2): 441-451.
1 |
Singh C S , Singh H , Singh V K , Singh Om P . Fractional order operational matrix methods for fractional singular integro-differential equation. Appl Math Model, 2016, 40, 10705- 10718
doi: 10.1016/j.apm.2016.08.011 |
2 |
Rehman M U , Khan R A . A numerical method for solving boundary value problems for fractional differential equations. Appl Math Model, 2012, 36, 894- 907
doi: 10.1016/j.apm.2011.07.045 |
3 | Zahra W K , Van Daele M . Discrete spline methods for solving two point fractional Bagley-Torvik equation. Appl Math Comput, 2017, 296, 42- 56 |
4 |
Pedas A , Tamme E , Vikerpuur M . Smoothing transformation and spline collocation for nonlinear fractional initial and boundary value problems. J Comput Appl Math, 2017, 317, 1- 16
doi: 10.1016/j.cam.2016.11.022 |
5 | Karraslan M F , Celiker F , Kurulay M . Approximate solution of the Bagley-Torvik equation by hybridizable discontinuous Galerkin methods. Appl Math Comput, 2016, 285, 51- 58 |
6 |
El-Ajou A , Aequb O A , Momani S . Solving fractional two-point boundary value problems using continuous analytic method. Ain Shams Eng J, 2013, 4, 539- 547
doi: 10.1016/j.asej.2012.11.010 |
7 |
Hashim I , Abdulaziz O , Momani S . Homotopy analysis method for fractional IVPs. Commun Nonlinear Sci Numer Simul, 2009, 14, 674- 684
doi: 10.1016/j.cnsns.2007.09.014 |
8 | Daftardar-Gejji V , Jafari H . Solving a multi-order fractional differential equation using adomian decomposition. Appl Math Comput, 2007, 189, 541- 548 |
9 | Abdulaziz O, Hashim I, Momani S. Solving systems of fractional differential equations by homotopy-perturbation method. Phys Lett, 2008, A372:451-459 |
10 | Wu G, Lee E W M. Fractional variational iteration method and its application. Phys Lett, 2010, A374:2506-2509 |
11 | Odibat Z , Momani S , Suat Erturk V . Generalized differential transform method:application to differential equations of fractional order. Appl Math Comput, 2008, 197, 467- 477 |
12 |
Arikoglu A , Ozkol I . Solution of fractional differential equations by using differential transform method. Chaos Soliton Frac, 2007, 34, 1473- 1481
doi: 10.1016/j.chaos.2006.09.004 |
13 |
Reutskiy S Yu . A novel method for solving second order fractional eigenvalue problems. J Comput Appl Math, 2016, 306, 133- 153
doi: 10.1016/j.cam.2016.04.003 |
14 | Zhang Y . A finite difference method for fractional partial differential equation. Appl Math Comput, 2009, 215, 524- 529 |
15 | Daftardar-Gejji V , Jhinga A . A new finite-difference predictor-corrector method for fractional differential equations. Appl Math Comput, 2018, 336, 418- 432 |
16 |
Baleanu D , Shiri B . Collocation methods for fractional differential equations involving non-singular kernel. Chaos Soliton Frac, 2018, 116, 136- 145
doi: 10.1016/j.chaos.2018.09.020 |
17 |
Ziane D , Baleanu D , Belghaba K , Hamdi Cherif M . Local fractional Sumudu decomposition method for linear partial differential equations with local fractional derivative. Journal of King Saud University-Science, 2019, 31, 83- 88
doi: 10.1016/j.jksus.2017.05.002 |
18 |
Zhou Y T , Zhang C J . Convergence and stability of block boundary value methods applied to nonlinear fractional differential equations with Caputo derivatives. Appl Numer Math, 2019, 135, 367- 380
doi: 10.1016/j.apnum.2018.09.010 |
19 |
Mohammadi F , Cattani C . A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations. J Comput Appl Math, 2018, 339, 306- 316
doi: 10.1016/j.cam.2017.09.031 |
20 | Bakhtiari P , Abbasbanda S , Van Gorder R A . Reproducing kernel method for the numerical solution of the 1D Swift-Hohenberg equation. Appl Math Comput, 2018, 339, 132- 143 |
21 |
Niu J , Xu M Q , Yao G M . An efficient reproducing kernel method for solving the Allen-Cahn equation. Appl Math Lett, 2019, 89, 78- 84
doi: 10.1016/j.aml.2018.09.013 |
22 |
Mei L C , Lin Y Z . Simplified reproducing kernel method and convergence order for linear Volterra integral equations with variable coefficients. J Comput Appl Math, 2019, 346, 390- 398
doi: 10.1016/j.cam.2018.07.027 |
23 |
Li X Y , Wu B Y . A numerical technique for variable fractional functional boundary value problems. Appl Math Lett, 2015, 43, 108- 113
doi: 10.1016/j.aml.2014.12.012 |
24 |
Yang J B , Yao H M , Wu B Y . An efficient numerical method for variable order fractional functional differential equation. Appl Math Lett, 2018, 76, 221- 226
doi: 10.1016/j.aml.2017.08.020 |
25 |
Geng F Z , Cui M G . A reproducing kernel method for solving nonlocal fractional boundary value problem. Appl Math Lett, 2012, 25, 818- 823
doi: 10.1016/j.aml.2011.10.025 |
26 |
Li X Y , Wu B Y . A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations. J Comput Appl Math, 2017, 311, 387- 393
doi: 10.1016/j.cam.2016.08.010 |
27 |
Xu M Q , Lin Y Z . Simplified reproducing kernel method for fractional differential equations with delay. Appl Math Lett, 2016, 52, 156- 161
doi: 10.1016/j.aml.2015.09.004 |
28 |
Li X Y , Li H , Wu B Y . A new numerical method for variable order fractional functional differential equations. Appl Math Lett, 2017, 68, 80- 86
doi: 10.1016/j.aml.2017.01.001 |
29 | 张禾瑞, 郝鈵新. 高等代数(第五版). 北京: 高等教育出版社, 2007 |
Zhang H R , Hao B X . Advanced Algebra (Fifth Edition). Beijing: Higher Education Press, 2007 | |
30 | 吴勃英, 林迎珍. 应用型再生核空间. 北京: 科学出版社, 2012 |
Wu B Y , Lin Y Z . Application of the Reproducing Kernel Space. Beijing: Science Press, 2012 |
[1] | 王春. 一类分数阶系统的稳定性和Laplace变换[J]. 数学物理学报, 2019, 39(1): 49-58. |
[2] | 王惠文, 曾红娟, 李芳. 多基点分数阶微分方程脉冲边值问题解的存在性[J]. 数学物理学报, 2018, 38(4): 697-715. |
[3] | Marko Kostić, 李成刚, 李淼. 抽象多项Riemann-Liouville分数阶微分方程[J]. 数学物理学报, 2016, 36(4): 601-622. |
[4] | 胡雷, 张淑琴, 侍爱玲. 分数阶微分方程耦合系统共振边值问题解的存在性[J]. 数学物理学报, 2014, 34(5): 1313-1326. |
[5] | 郝晓红, 程智龙, 周宗福. 一类非线性分数阶多点边值问题的可解性[J]. 数学物理学报, 2014, 34(3): 655-668. |
[6] | 舒小保, 戴斌祥. 半线性中立型分数阶微分方程S -渐近ω周期解[J]. 数学物理学报, 2014, 34(1): 16-26. |
[7] | 王永庆, 刘立山. Banach 空间中分数阶微分方程m点边值问题的正解[J]. 数学物理学报, 2012, 32(1): 246-256. |
[8] | 许晓婕, 孙新国, 吕炜. 非线性分数阶微分方程边值问题正解的存在性[J]. 数学物理学报, 2011, 31(2): 401-409. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 86
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 80
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|