数学物理学报 ›› 2020, Vol. 40 ›› Issue (2): 432-440.

• 论文 • 上一篇    下一篇

Kirchhoff方程单峰解的局部唯一性

许诗敏(),王春花()   

  1. 华中师范大学数学与统计学学院 武汉 430079
  • 收稿日期:2018-09-05 出版日期:2020-04-26 发布日期:2020-05-21
  • 作者简介:许诗敏, E-mail:xushiminxsm@163.com|王春花, E-mail:chunhuawang@mail.ccnu.edu.cn
  • 基金资助:
    国家自然科学基金(11671162)

Local Uniqueness of a Single Peak Solution of a Subcritical Kirchhoff Problem in R3

Shimin Xu(),Chunhua Wang()   

  1. School of Mathematics and Statistics, Central China Normal University, Wuhan 430079
  • Received:2018-09-05 Online:2020-04-26 Published:2020-05-21
  • Supported by:
    国家自然科学基金(11671162)

摘要:

该文主要证明了以下非线Kirchhoff问题的单峰解的局部唯一性

其中ε>0任意小,a,b>0,1 < p < 5,K:$\mathbb{R}^3$→$\mathbb{R}$是连续有界函数.该文主要采用反证法结合局部的Pohozeav恒等式进行证明.

关键词: 非线性Kirchhoff问题, 局部唯一性, Pohozaev恒等式

Abstract:

In this paper, we obtain the local uniqueness of a single peak solution to the following Kirchhoff problem

for ε>0 sufficiently small, where a, b>0 and 1 < p < 5 are constants, K: $\mathbb{R}^3$→$\mathbb{R}$ isabounded continuous function. We mainly use a contradiction argument developed by Li G, Luo P, Peng S in[20], applying some local pohozaev identities. Our result is totally new for Kirchhoff equations.

Key words: Local uniqueness, Nonlinear Kirchhoff equations, Pohozaev identities

中图分类号: 

  • O175.2