1 |
Glangetas L . Uniqueness of positive solutions of a nonlinear elliptic equation involving the critical exponent. Nonlinear Anal, 1993, 20, 571- 603
doi: 10.1016/0362-546X(93)90039-U
|
2 |
Oh R . The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent. Journal of Functional Analysis, 1990, 89 (1): 1- 52
|
3 |
Grossi M . On the number of single-peak solutions of the nonlinear Schrödinger equation. Annales De Linstitut Henri Poincare Non Linear Analysis, 2002, 19 (3): 261- 280
doi: 10.1016/S0294-1449(01)00089-0
|
4 |
Cao D , Heinz H P . Uniqueness of positive multi-lump bound states of nonlinear Schrödinger equations. Mathematische Zeitschrift, 2003, 243 (3): 599- 642
doi: 10.1007/s00209-002-0485-8
|
5 |
Deng Y , Lin C , Yan S . On the prescribed scalar curvature problem in $\mathbb{R}^N$, local uniqueness and Periodicity. Journal De Mathématiques Pures Et Appliquées, 2015, 104 (6): 1013- 1044
doi: 10.1016/j.matpur.2015.07.003
|
6 |
Cao D , Li S , Luo P . Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations. Calculus of Variations and Partial Differential Equations, 2015, 54 (4): 4037- 4063
doi: 10.1007/s00526-015-0930-2
|
7 |
Guo Y , Peng S , Yan S . Local uniqueness and periodicity induced by concentration. Proceedings of the London Mathematical Society, 2017, 114, 1005- 1043
doi: 10.1112/plms.12029
|
8 |
Peng S , Wang C , Yan S . Construction of solutions via local Pohozaev idnetities. Journal of Functional Analysis, 2018, 274, 2606- 2633
doi: 10.1016/j.jfa.2017.12.008
|
9 |
Deng Y , Peng S , Shuai W . Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^3$. Journal of Functional Analysis, 2015, 269 (11): 3500- 3527
doi: 10.1016/j.jfa.2015.09.012
|
10 |
Figueiredo G , Ikoma N , Santos J . S Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Archive for Rational Mechanics and Analysis, 2014, 123 (3): 931- 979
|
11 |
Guo Z . Ground states for Kirchhoff equations without compact condition. Journal of Differential Equations, 2015, 259 (7): 2884- 2902
doi: 10.1016/j.jde.2015.04.005
|
12 |
He Y , Li G . Standing waves for a class of Kirchhoff type problems in $\mathbb{R}^3$ involving critical Sobolev exponents. Calculus of Variations and Partial Differential Equations, 2015, 54 (3): 3067- 3106
doi: 10.1007/s00526-015-0894-2
|
13 |
He X , Zou W . Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Analysis:Theory, Methods and Applications, 2010, 70 (3): 1407- 1414
|
14 |
He X , Zou W . Multiplicity of solutions for a class of Kirchhoff type problems. Acta Mathematicae Applicatae Sinica, 2010, 70 (3): 387- 394
|
15 |
Li Y , Li F , Shi J . Existence of a positive solution to Kirchhoff type problems without compactness conditions. Journal of Differential Equations, 2012, 253 (7): 2285- 2294
doi: 10.1016/j.jde.2012.05.017
|
16 |
Li G , Ye H . Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^3$. Journal of Differential Equations, 2014, 257 (2): 566- 600
doi: 10.1016/j.jde.2014.04.011
|
17 |
Lu S . An autonomous Kirchhoff-type equation with general nonlinearity in $\mathbb{R}^N$. Nonlinear Analysis:Real World Applications, 2017, 34, 233- 249
doi: 10.1016/j.nonrwa.2016.09.003
|
18 |
Perera K , Zhang Z . Nontrivial solutions of Kirchhoff-type problems via the Yang index. Journal of Differential Equations, 2006, 221 (1): 246- 255
doi: 10.1016/j.jde.2005.03.006
|
19 |
Zhang Z , Perera K . Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. Journal of Mathematical Analysis and Applications, 2006, 317 (2): 456- 463
doi: 10.1016/j.jmaa.2005.06.102
|
20 |
Li G, Luo P, Peng S, et al. Uniqueness and nondegeneracy of positive solutions to Kirchhoff equations and its applications in singular perturbation problems. 2017, arXiv:1703.05459
|
21 |
Cao D , Li S , Luo P . Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations. Calculus of Variations and Partial Differential Equations, 2015, 54 (4): 4037- 4063
doi: 10.1007/s00526-015-0930-2
|