数学物理学报 ›› 2020, Vol. 40 ›› Issue (1): 156-168.

• 论文 • 上一篇    下一篇

加权的退化椭圆系统稳定解的Liouville定理

吴千秋,胡良根*()   

  1. 宁波大学数学与统计学院 浙江宁波 315211
  • 收稿日期:2018-05-08 出版日期:2020-02-26 发布日期:2020-04-08
  • 通讯作者: 胡良根 E-mail:hulianggen@tom.com
  • 基金资助:
    浙江省自然科学基金(LY17A010007);宁波市自然科学基金(2018A610194)

Liouville Type Theorems for Stable Solutions of the Degenerate Elliptic System with Weight

Qianqiu Wu,Lianggen Hu*()   

  1. School of Mathematics and Statistics, Ningbo University, Zhejiang Ningbo 315211
  • Received:2018-05-08 Online:2020-02-26 Published:2020-04-08
  • Contact: Lianggen Hu E-mail:hulianggen@tom.com
  • Supported by:
    the Natural Science Foundation of Zhejiang Province(LY17A010007);the Natural Science Foundation of Ningbo(2018A610194)

摘要:

该文研究了加权的退化椭圆系统

其中$\Delta_{G} u=\Delta_{x} u+(a+1)^2|x|^{2a}\Delta_{y} u$是Grushin算子, $a, \beta\ge0$, $q>1$, $\omega(x)=\left (1+\| x \|^{2(a+1)}\right)^{\frac{\beta}{2(a+1)}}$.超临界指数正稳定解的Liouville定理被建立.

关键词: Grushin算子, 稳定解, Liouville定理, Bootstrap方法

Abstract:

We study the degenerate elliptic system with weight

where $\Delta_{G} u=\Delta_{x} u+(a+1)^2|x|^{2a}\Delta_{y} u$ is the Grushin operator, $a, \beta\ge0$, $q>1$, $\omega(x)=\left (1+\| x \|^{2(a+1)}\right)^{\frac{\beta}{2(a+1)}}$. Liouville type results for positive stable solutions in the supercritical exponent are established.

Key words: Grushin operator, Stable solution, Liouville theorem, Bootstrap method

中图分类号: 

  • O175.25