1 |
Antontsev S, Díaz J, Shmarev S. Energy Methods for free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics. Boston: Bikhäuser, 2002
|
2 |
Antontsev S , Rodrigues J . On stationary thermo-rheological viscous flows. Ann Univ Ferrara Sez VⅡ Sci Mat, 2006, 52, 19- 36
doi: 10.1007/s11565-006-0002-9
|
3 |
Antontsev S . Wave equation with $p(x, t)$-Laplacian and damping term: existence and blow-up. Differ Equ Appl, 2011, 3, 503- 525
|
4 |
Antontsev S . Wave equation with $p(x, t)$-Laplacian and damping: blow-up of solutions. C R Mecanique, 2011, 339, 751- 755
doi: 10.1016/j.crme.2011.09.001
|
5 |
Fan X , Zhao D . On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$. J Math Anal Appl, 2001, 263, 424- 446
doi: 10.1006/jmaa.2000.7617
|
6 |
Guo B , Gao W . Existence and asymptotic behavior of solutions for nonlinear parabolic equations with variable exponent of nonlinearity. Acta Math Sci, 2012, 32B (3): 1053- 1062
|
7 |
Guo B , Gao W . Blow-up of solutions to quasilinear hyperbolic equations with $p(x, t)$-Laplacian operator and positive initial energy. C R Mecanique, 2014, 342, 513- 519
doi: 10.1016/j.crme.2014.06.001
|
8 |
Guo B . An inverse Hölder inequality and its application in lower bound estimates for blow-up time. C R Mecanique, 2017, 345, 370- 377
doi: 10.1016/j.crme.2017.04.002
|
9 |
Haehnle J , Prohl A . Approximation of nonlinear wave equations with nonstandard anisotropic growth conditions. Math Comp, 2010, 79, 189- 208
doi: 10.1090/S0025-5718-09-02231-5
|
10 |
Li F , Liu F . Blow-up of solutions to a quasilinear wave equation for high initial energy. C R Mecanique, 2018, 346, 402- 407
doi: 10.1016/j.crme.2018.03.002
|
11 |
Martinez P . A new method to obtain decay rate estimates for dissipative systems. ESAIM: Control Optim Calc Var, 1999, 4, 419- 444
doi: 10.1051/cocv:1999116
|
12 |
Messaoudi S , et al. Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities. Comput Math Appl, 2018, 76, 1863- 1875
doi: 10.1016/j.camwa.2018.07.035
|
13 |
Pucci P, Serrin J. Asympptotic Stablility for Nonlinear Parabolic Systems//Antontsev S N, Diaz J I, Shmarev S I. Energy Methods in Continuum Mechanics. Dordrecht: Kluwer Acad Publ, 1996: 66-74
|
14 |
Pinasco J . Blow-up for parabolic and hyperbolic problems with variable exponents. Nonlinear Anal, 2009, 71, 1094- 1099
doi: 10.1016/j.na.2008.11.030
|
15 |
R${\rm{\dot u}}$žička M. Electrorheological Fluids: Modeling and Mathematical Theory. Berlin: Springer-Verlag, 2000
|
16 |
Rajagopal K , R${\rm{\dot u}}$žička M . Mathematical modeling of electro-rheological fluids. Cont Mech Therm, 2001, 13, 59- 78
doi: 10.1007/s001610100034
|