1 |
Elliott J , Hoek J . A general fractional white noise theory and applications to finance. Mathematical Finance, 2003, 13 (2): 301- 330
doi: 10.1111/1467-9965.00018
|
2 |
Hu Y Z , Øsendal B . Fractional White noise calculus and applications to finance, infinite dimensional analysis. Quantum Probability and Related Topics, 2003, 6 (1): 1- 32
doi: 10.1142/S0219025703001110
|
3 |
Mishura Y . Stochastic Calculus Fractional Brownian Motions and Related Processes. Berlin: Springer, 2008
|
4 |
Tomas B , Henrik H . A note on Wick products and the fractional Black-Scholes model. Finance and Stochastics, 2005, 9 (2): 197- 209
doi: 10.1007/s00780-004-0144-5
|
5 |
Xiao W L , Zhang W G , Zhang X L , Zhang X . Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm. Physica A, 2012, 391 (24): 6418- 6431
doi: 10.1016/j.physa.2012.07.041
|
6 |
Sun L . Pricing currency options in the mixed fractional Brownian motion. Physica A, 2013, 392 (16): 3441- 3458
doi: 10.1016/j.physa.2013.03.055
|
7 |
He X J , Chen W T . The pricing of credit default swaps under a generalized mixed fractional Brownian motion. Physica A, 2014, 404 (36): 26- 33
|
8 |
Cheridito P . Mixed fractional Brownian motion. Bernoulli, 2001, 7 (6): 913- 934
doi: 10.2307/3318626
|
9 |
Zili M. On the mixed fractional Brownian motion. Journal of Applied Mathematics and Stochastic Analysis, 2006, 1-9: Art ID: 32435
|
10 |
Bender C , Sottinen T , Valkeila E . Pricing by hedging and no-arbitrage beyond semimartingales. Finance and Stochastics, 2008, 12 (4): 441- 468
doi: 10.1007/s00780-008-0074-8
|
11 |
Foad S , Adem K . Pricing currency option in a mixed fractional Brownian motion with jumps environment. Mathematical Problems in Engineering, 2014, 1 (1): 1- 13
|
12 |
Foad S , Adem K . Actuarial approach in a mixed fractional Brownian motion with jumps environment for pricing currency option. Advances in Difference Equations, 2015, 257 (1): 1- 8
|
13 |
Rao B L S P . Option pricing for processes driven by mixed fractional Brownian motion with superimposed jumps. Probability in the Engineering and Informational Sciences, 2015, 29 (4): 589- 596
doi: 10.1017/S0269964815000200
|
14 |
Miao J , Yang X . Pricing model for convertible bonds:A mixed fractional Brownian motion with jumps. East Asian Journal on Applied Mathematics, 2015, 5 (3): 222- 237
doi: 10.4208/eajam.221214.240415a
|
15 |
Yang Z Q . Optimal exercise boundary of American fractional lookback option in a mixed jump-diffusion fractional Brownian motion environment. Mathematical Problems in Engineering, 2017, 3 (1): 1- 17
|
16 |
张伟江. 奇异摄动导论. 北京: 科学出版社, 2014
|
|
Zhang W J . Introduction to Singular Perturbation. Beijing: Science Press, 2014
|
17 |
Nesterov A V , Shuliko O V . Asymptotics of the solution to a singularly perturbed system of parabolic equations in the critical case. Computational Mathematics and Mathematical Physics, 2010, 50 (2): 256- 263
doi: 10.1134/S0965542510020077
|
18 |
Ma Y S , Li Y . A uniform asymptotic expansion for stochastic volatility model in pricing multi-asset European options. Applied Stochastic Models in Business and Industry, 2012, 28 (4): 324- 341
doi: 10.1002/asmb.880
|
19 |
Butuzov V F , Bychkov A I . Asymptotics of the solution of an initial-boundary value problem for a singularly perturbed parabolic equation in the case of double root of the degenerate equation. Computational Mathematics and Mathematical Physics, 2013, 49 (10): 1261- 1273
|
20 |
Lai T L , Lim T W . Exercise regions and efficient valuation of American lookback options. Mathematical Finance, 2004, 14 (2): 249- 269
doi: 10.1111/j.0960-1627.2004.00191.x
|
21 |
Eberlein E , Papapantoleon A . Equivalence of floating and fixed strike Asian and lookback options. Stochastic Processes and their Applications, 2005, 115 (1): 31- 40
doi: 10.1016/j.spa.2004.07.003
|
22 |
Leung K S . An analytic pricing formula for lookback options under stochastic volatility. Applied Mathematics Letters, 2013, 26 (1): 145- 149
doi: 10.1016/j.aml.2012.07.008
|
23 |
Park S H , Kim J H . An semi-analytic pricing formula for lookback options under a general stochastic volatility model. Statistics and Probability Letters, 2013, 83 (11): 2537- 2543
doi: 10.1016/j.spl.2013.08.002
|
24 |
Fuh C D , Luo S F , Yen J F . Pricing discrete path-dependent options under a double exponential jump-diffusion model. Journal of Banking and Finance, 2013, 37 (8): 2702- 2713
doi: 10.1016/j.jbankfin.2013.03.023
|
25 |
杨朝强. 一类特殊混合跳-扩散模型的欧式回望期权定价. 华东师范大学学报(自然科学版), 2017, 194 (4): 1- 17
doi: 10.3969/j.issn.1000-5641.2017.04.001
|
|
Yang Z Q . Pricing European lookback option by a special kind of mixed jump-diffusion model. Journal of East China Normal University (Natural Science), 2017, 194 (4): 1- 17
doi: 10.3969/j.issn.1000-5641.2017.04.001
|
26 |
杨朝强. 混合跳-扩散模型下一类基金公司的金融债券定价与违约概率研究. 系统工程, 2018, 36 (2): 16- 28
doi: 10.3969/j.issn.1001-2362.2018.02.007
|
|
Yang Z Q . Pricing of fund corporate bonds and default probability study under mixed jump-diffusion model. Systems Engineering, 2018, 36 (2): 16- 28
doi: 10.3969/j.issn.1001-2362.2018.02.007
|