1 |
Artzner P , Delbaen F , Eber J M , Heath D . Coherent measures of risk. Math Finance, 1999, 9 (3): 203- 228
|
2 |
Bishwal J P N. Parameter Estimation in Stochastic Differential Equations. Berlin Heidelberg: Springer-Verlag, 2008
|
3 |
Chen Z . Strong laws of large numbers for sub-linear expectations. Science China Mathematics, 2016, 59 (5): 945- 954
doi: 10.1007/s11425-015-5095-0
|
4 |
Chen Z , Epstein L . Ambiguity, risk and asset returns in continuous time. Econometrica, 2002, 70 (4): 1403- 1443
doi: 10.1111/1468-0262.00337
|
5 |
Cheridito P , Kawaguchi H , Maejima M . Fractional Ornstein-Uhlenbeck processes. Electron J Probab, 2003, 8: 1- 14
doi: 10.1214/ECP.v8-1064
|
6 |
Delbaen F , Peng S , Rosazza Gianin E . Representation of the penalty term of dynamic concave utilities. Finance Stoch, 2010, 14: 449- 472
doi: 10.1007/s00780-009-0119-7
|
7 |
Ellsberg D . Risk, ambiguity, and the Savage axioms. Quarterly Journal of Economics, 1961, 75: 643- 669
doi: 10.2307/1884324
|
8 |
Epstein L , Ji S . Ambiguity volatility and asset pricing in continuous time. Journal of Mathematical Economics, 2014, 50: 269- 282
doi: 10.1016/j.jmateco.2013.09.005
|
9 |
Fan J , Peng H . Nonconcave penalized likelihood with a diverging number of parameters. Annals of Statistics, 2004, 32: 928- 961
doi: 10.1214/009053604000000256
|
10 |
Fei C , Fei W Y , Yan L T . Existence and stability of solutions to highly nonlinear stochastic differential delay equations driven by G-Brownian motion. Appl Math J Chinese Univ, 2019, 34B (2): 184- 204
|
11 |
Fei W Y . Optimal portfolio choice based on α-MEU under ambiguity. Stochastic Models, 2009, 25: 455- 482
doi: 10.1080/15326340903088826
|
12 |
Fei W Y, Fei C. Optimal stochastic control and optimal consumption and portfolio with G-Brownian motion. 2013, arXiv: 1309.0209v1
|
13 |
Fei W Y, Fei C. On exponential stability for stochastic differential equations disturbed by G-Brownian motion. 2013, arXiv: 1311.7311v1
|
14 |
Gao F Q . Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion. Stochastic Processes and their Applications, 2009, 119: 3356- 3382
doi: 10.1016/j.spa.2009.05.010
|
15 |
Hu M , Ji S , Peng S , Song Y . Backward stochastic differential equations driven by G-Brownian motion. Stochastic Processes and their Applications, 2014, 124: 759- 784
doi: 10.1016/j.spa.2013.09.010
|
16 |
Hu Y , Nualart D . Parameter estimation for fractional Ornstein-Uhlenbeck processes. Statistics and Probability Letters, 2010, 80: 1030- 1038
doi: 10.1016/j.spl.2010.02.018
|
17 |
Huber P J. Robust Statistics. New York: John Wiley and Sons, 1981
|
18 |
Kasonga R . The consistemcy of a non-linear least squares estimation from diffusion processes. Stochastic Processes and their Applications, 1988, 30: 263- 275
doi: 10.1016/0304-4149(88)90088-9
|
19 |
Knight F H. Risk, Uncertainty and Profit. Boston: Houghton Mifflin, 1921
|
20 |
Kutoyants Yu A. Statistical Inference for Ergodic Diffusion Processes. London: Springer-Verlag, 2004
|
21 |
Lin L , Dong P , Song Y , Zhu L . Upper expectation parametric regression. Statistica Sinica, 2017, 27 (3): 1265- 1280
|
22 |
Lin L , Shi Y , Wang X , Yang S . k-sample upper expectation linear regression-modeling, identifiability, estimation and prediction. Journal of Statistical Planning and Inference, 2016, 170: 15- 26
doi: 10.1016/j.jspi.2015.09.002
|
23 |
Lin Q . Some properties of stochastic differential equations driven by G-Brownian motion. Acta Math Sin (Engl Ser), 2013, 29: 923- 942
doi: 10.1007/s10114-013-0701-y
|
24 |
Lin Y . Stochastic differential eqations driven by G-Brownian motion with reflecting boundary. Electron J Probab, 2013, 18 (9): 1- 23
|
25 |
Luo P , Wang F . Stochastic differential equations driven by G-Brownian motion and ordinary differential equations. Stochastic Processes and their Applications, 2014, 124: 3869- 3885
doi: 10.1016/j.spa.2014.07.004
|
26 |
Mao X. Stochastic Differential Equations and Their Applications, 2nd Edition. Chichester: Horwood Pub, 2007
|
27 |
Peng S. Nonlinear expectations and stochastic calculus under uncertainty. 2010, arXiv: 1002.4546v1
|
28 |
Prakasa Rao B L S. Statistical Inference for Diffusion Type Processes. London: Arnold, 1999
|
29 |
Shen G J , Yin X W , Yan L T . Least squares estimation for Ornstein-Uhlenbeck processes driven by the weighted fractional Brownian motion. Acta Mathematica Scientia, 2016, 36B (2): 394- 408
|
30 |
Sun C F , Ji S L . The least squares estimator of random variables under sublinear expectations. Journal of Mathematical Analysis and Applications, 2017, 451 (2): 906- 923
doi: 10.1016/j.jmaa.2017.02.020
|