1 |
Andersson D , Djehiche B . A maximum principle for SDEs of mean-field type. Applied Mathematics and Optimization, 2011, 63: 341- 356
doi: 10.1007/s00245-010-9123-8
|
2 |
Baghery F , Baghery F , Øksendal B . A maximum principle for stochastic control with partial information. Stochastic Analysis and Applications, 2007, 25 (3): 705- 717
doi: 10.1080/07362990701283128
|
3 |
Buckdahn R , Djehiche B , Li J . A general stochastic maximum principle for SDEs of mean-field type. Applied Mathematics and Optimization, 2011, 64: 197- 216
doi: 10.1007/s00245-011-9136-y
|
4 |
Buckdahn R , Djehiche B , Li J , Peng S . Mean-field backward stochastic differential equations:a limit approach. The Annals of Probability, 2009, 37 (4): 1524- 1565
doi: 10.1214/08-AOP442
|
5 |
Buckdahn R , Li J , Peng S . Mean-field backward stochastic differential equations and related partial differential equations. Stochastic Processes and Their Applications, 2009, 119 (10): 3133- 3154
doi: 10.1016/j.spa.2009.05.002
|
6 |
Du H , Huang J , Qin Y . A stochastic maximum principle for delayed mean-field stochastic differential equations and its applications. IEEE Transactions on Automatic Control, 2013, 38: 3212- 3217
|
7 |
Ekeland I , Témam R . Convex Analysis and Variational Problems. Amsterdam: North-Holland, 1976
|
8 |
Elliott R , Li X , Ni Y H . Discrete time mean-field stochastic linear-quadratic optimal control problems. Automatica, 2013, 49 (11): 3222- 3233
doi: 10.1016/j.automatica.2013.08.017
|
9 |
Hafayed M . A mean-field maximum principle for optimal control of forward-backward stochastic differential equations with Poisson jump processes. International Journal of Dynamics and Control, 2013, 1 (4): 300- 315
doi: 10.1007/s40435-013-0027-8
|
10 |
Huang J , Li X , Yong J . A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1): 97- 139
doi: 10.3934/mcrf
|
11 |
Li X, Sun J, Xiong J. Linear quadratic optimal control problems for mean-field backward stochastic differential equations. Applied Mathematics and Optimization.[2017-12-07]. http://doi.org/10.1007/s00245-017-9464-7
|
12 |
Li J . Stochastic maximum principle in the mean-field controls. Automatica, 2012, 48 (2): 366- 373
doi: 10.1016/j.automatica.2011.11.006
|
13 |
Ma H , Liu B . Linear quadratic optimal control problem for partially observed forward backward stochastic differential equations of mean-field type. Asian Journal of Control, 2017, 19 (1): 1- 12
|
14 |
Ma L , Zhang W . Output feedback H∞ control for discrete time mean-field stochastic systems. Asian Journal of Control, 2015, 17 (6): 2241- 2251
doi: 10.1002/asjc.1128
|
15 |
Ma L , Zhang T , Zhang W . H∞ control for continuous time mean-field stochastic systems. Asian Journal of Control, 2016, 18 (5): 1630- 1640
doi: 10.1002/asjc.1290
|
16 |
Meng Q , Shen Y . Optimal control of mean-field jump-diffusion systems with delay:A stochastic maximum principle approach. Journal of Computational and Applied Mathematics, 2015, 279: 13- 30
doi: 10.1016/j.cam.2014.10.011
|
17 |
Meyer-Brandis T , Øksendal B , Zhou X Y . A mean-field stochastic maximum principle via Malliavin calculus. Stochastics, 2012, 84: 643- 666
doi: 10.1080/17442508.2011.651619
|
18 |
Ni Y H , Li X , Zhang J F . Finite-horizon indefinite mean-field stochastic linear-quadratic optimal control. IFAC-PapersOnLine, 2015, 48 (28): 211- 216
doi: 10.1016/j.ifacol.2015.12.127
|
19 |
Ni Y H , Zhang J F , Li X . Indefinite mean-field stochastic linear-quadratic optimal control. IEEE Transactions on Automatic Control, 2015, 60 (7): 1786- 1800
doi: 10.1109/TAC.2014.2385253
|
20 |
Zhang H, Qi Q. A Complete solution to optimal control and stabilization for mean-field systems: Part I, Discrete-time case. 2016, arXiv: 1608.06363
|
21 |
Qi Q, Zhang H. A Complete solution to optimal control and stabilization for mean-field systems: Part Ⅱ, Continuous-time case. 2016, arXiv: 1608.06475
|
22 |
Shen Y , Meng Q , Shi P . Maximum principle for mean-field jump diffusion stochastic delay differential equations and its application to finance. Automatica, 2014, 50 (6): 1565- 1579
doi: 10.1016/j.automatica.2014.03.021
|
23 |
Shen Y , Siu T K . The maximum principle for a jump-diffusion mean-field model and its application to the mean-variance problem. Nonlinear Analysis:Theory, Methods and Applications, 2013, 86: 58- 73
doi: 10.1016/j.na.2013.02.029
|
24 |
Tang M, Meng Q. Linear-quadratic optimal control problems for mean-field stochastic differential equations with jumps. 2016, arXiv: 1610.03193
|
25 |
Wang G, Wu Z, Zhang C. Maximum principles for partially observed mean-field stochastic systems with application to financial engineering. 2014, DOI: 10.1109/ChiCC.2014.6895853
|
26 |
Wang G, Wu Z, Zhang C. A partially observed optimal control problem for mean-field type forwardbackward stochastic system. 2016, DOI: 10.1109/ChiCC.2016.7553351
|
27 |
Wang G, Xiao H, Xing G. A class of optimal control problems for mean-field forward-backward stochastic systems with partial information. 2015, arXiv: 1509.03729
|
28 |
Wang G , Zhang C , Zhang W . Stochastic maximum principle for mean-field type optimal control under partial information. IEEE Transactions on Automatic Control, 2014, 59 (2): 522- 528
doi: 10.1109/TAC.2013.2273265
|
29 |
Yong J . Linear-quadratic optimal control problems for mean-field stochastic differential equations. SIAM Journal on Control and Optimization, 2013, 51 (4): 2809- 2838
doi: 10.1137/120892477
|