1 |
Abramowitz M , Stegun I A . Handbook of Mathematical Functions. Washington, DC: National Bureau of Standards, 1964
|
2 |
Polyanin A D , Manzhirov A V . Handbook of Integral Equations. Boca Raton, Fla: CRC Press, 1998
|
3 |
Asheim A , Huybrechs D . Local solutions to high frequency 2D scattering problems. J Comput Phys, 2009, 229: 5357- 5372
|
4 |
Rokhlin V . Rapid solution of integral equations of classical potential theory. J Comput Phys, 1985, 60: 187- 207
doi: 10.1016/0021-9991(85)90002-6
|
5 |
Greengard L , Rokhlin V . A fast algorithm for particle simulations. J Comput Phys, 1987, 73: 325- 348
doi: 10.1016/0021-9991(87)90140-9
|
6 |
Liu Y J . Fast Multipole Boundary Element Method:Theory and Applications in Engineering. Cambridge: Cambridge University Press, 2009
|
7 |
Hsiao B , Wendland W . Boundary Integral Equations. Berlin: Springer, 2008
|
8 |
Amini S , Profit A T J . Analysis of a diagonal form of the fast multipole algorithm for scattering theory. BIT Numer Math, 1999, 39: 585- 602
doi: 10.1023/A:1022331021899
|
9 |
Colton D , Kress R . Integral Equation Methods in Scattering Theory. New York: Wiley, 1983
|
10 |
Arden S , Chandlerwilde S , Langdon S . A collocation method for high-frequency scattering by convex polygons. Journal of Computational and Applied Mathematics, 2007, 204: 334- 343
doi: 10.1016/j.cam.2006.03.028
|
11 |
Wang H , Xiang S . Uniform approximations to Cauchy principal value integrals of oscillatory functions. Applied Mathematics and Computation, 2009, 215 (5): 1886- 1894
doi: 10.1016/j.amc.2009.07.041
|
12 |
Iserles A , Andørsett S P N . On quadrature methods for highly oscillatory integrals and their implementation. BIT Numer Math, 2004, 44: 755- 772
doi: 10.1007/s10543-004-5243-3
|
13 |
Iserles A , Andørsett S P N . Efficient quadrature of highly oscillatory integrals using derivatives. Proc Royal Soc A, 2005, 461: 1383- 1399
doi: 10.1098/rspa.2004.1401
|
14 |
Cheng H , Crutchfield W , Gimbutas Z , et al. Remarks on the implementation of the wideband FMM for the Helmholtz equation in two dimensions. Contemp Math Amer Math Soc, 2006, 408: 99- 110
doi: 10.1090/conm/408
|
15 |
Wu H J , Jiang W K , Liu Y J . Diagonal form fast multipole boundary element method for 2D acoustic problems based on Burton-Miller boundary integral equation formulation and its applications. Appl Math Mech, 2011, 32: 981- 996
doi: 10.1007/s10483-011-1474-7
|
16 |
Amini S , Profit A T J . Analysis of a diagonal form of the fast multipole algorithm for scattering theory. BIT Numer Math, 1999, 39: 585- 602
doi: 10.1023/A:1022331021899
|
17 |
Dominguez V . Filon-Clenshaw-Curtis rules for a class of highly-oscillatory integrals with logarithmic singularities. Journal of Computational and Applied Mathematics, 2014, 261: 299- 319
doi: 10.1016/j.cam.2013.11.012
|
18 |
Dominguez V , Graham I , Kim T . Filon-Clenshaw-Curtis rules for highly oscillatory integrals with algebraic singularities and stationary points. SIAM J Numer Anal, 2013, 51: 1542- 1566
doi: 10.1137/120884146
|
19 |
Dominguez V , Graham I , Smyshlyaev V . Stability and error estimates for Filon-Clenshaw-Curtis rules for highly oscillatory integrals. IMA J Numer Anal, 2011, 31: 1253- 1280
doi: 10.1093/imanum/drq036
|
20 |
Langdon S , Chandler-Wilde S N . A wavenumber independent boundary element method for an acoustic scattering problem. SIAM J Numer Anal, 2006, 43: 2450- 2477
doi: 10.1137/S0036142903431936
|
21 |
Chandlerwilde S , Graham I , Langdon S . Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numerica, 2012, 21: 89- 305
doi: 10.1017/S0962492912000037
|
22 |
Levin D . Fast integration of rapidly oscillatory integrals. J Comp Appl Math, 1996, 67: 95- 101
doi: 10.1016/0377-0427(94)00118-9
|
23 |
Nédélec J C . Acoustic and Electromagnetic Equations. Berlin: Springer, 2001
|
24 |
Xiang S , Chen X , Wang H . Error bounds for approximation in Chebyshev points. Numer Math, 2010, 116: 463- 491
doi: 10.1007/s00211-010-0309-4
|
25 |
Xiang S , He G , Cho Y . On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals. Advances in Computational Mathematics, 2014, 41: 573- 597
|