1 |
Bellen A , Zennaro M . Numerical Methods for Delay Differential Equations. New York: Oxford University Press, 2003
|
2 |
Čermák J , Jansky J . On the asymptotics of the trapezoidal rule for the pantograph equation. Math Comput, 2009, 78 (268): 2107- 2126
doi: 10.1090/S0025-5718-09-02245-5
|
3 |
Gugllelmi N , Zennaro M . Stability of one-leg methods for the variable coefficient pantograph equation on the quasi-geometric. IMA J Numer Anal, 2003, 23 (3): 421- 438
|
4 |
Heard M L . A family of solutions of the IVP for the equation $x'(t)=ax(λt), λ > 1$. Aequations Math, 1973, 9 (3): 273- 280
|
5 |
Huang C , Vandewalle S . An analysis of delay dependent stablity for ordinary and partial differential equations with fixed and distributed delays. SIAM J Sci Comput, 2004, 25 (5): 1608- 1632
doi: 10.1137/S1064827502409717
|
6 |
Iserles A . On the generalized pantograph functional-differential equation. Europ J Appl Math, 1993, 4 (1): 1- 38
|
7 |
Kuang J , Cong Y . Stablity of Numerical Methods for Delay Differential Equations. Beijing: Science Press, 2005
|
8 |
Lehniger H , Liu Y . The functional-differential equation $y'(t)=Ay(t) + By(λt) + Cy'(qt) + f(t)$. Europ J Appl Math, 1998, 9 (1): 81- 91
|
9 |
Liu Y . Regular solutions of the Shabat equation. J Diff Equ, 1999, 154 (1): 1- 41
doi: 10.1006/jdeq.1998.3541
|
10 |
Vandewalle S . Discretized stablity and error growth of the non-autonomous pantograph equation. SIAM J Numer Anal, 2005, 42 (5): 2020- 2042
|
11 |
Wang W , Li S . Stability analysis of θ-methods for nonlinear neutral functional differential equations. SIAM J Sci Comput, 2008, 30 (4): 2181- 2205
doi: 10.1137/060654116
|
12 |
Wang W , Li S , Su K . Nonlinear stability of Runge-Kutta methods for neutral delay differential equations. J Comput Appl Math, 2008, 214 (1): 175- 185
|
13 |
Zhang G , Xiao A , Wang W . The asymptotic behaviour of the θ-methods with constant stepsize for the generalized pantograph equation. Int J Comput Math, 2016, 93 (9): 1484- 1504
doi: 10.1080/00207160.2015.1061124
|