数学物理学报 ›› 2019, Vol. 39 ›› Issue (3): 570-581.

• 论文 • 上一篇    下一篇

分数布朗运动驱动的带脉冲的中立性随机泛函微分方程的渐近稳定性

崔静*(),梁秋菊,毕娜娜   

  1. 安徽师范大学数学与统计学院 安徽芜湖 241000
  • 收稿日期:2017-02-24 出版日期:2019-06-26 发布日期:2019-06-27
  • 通讯作者: 崔静 E-mail:jcui123@126.com
  • 基金资助:
    国家自然科学基金(11401010);国家自然科学基金(11571071);安徽省自然科学基金(1708085MA03);安徽省杰出青年学者基金(1608085J06)

Asymptotic Stability of Impulsive Neutral Stochastic Functional Differential Equation Driven by Fractional Brownian Motion

Jing Cui*(),Qiuju Liang,Nana Bi   

  1. College of Mathematics and Statistics, Anhui Normal University, Anhui Wuhu 241000
  • Received:2017-02-24 Online:2019-06-26 Published:2019-06-27
  • Contact: Jing Cui E-mail:jcui123@126.com
  • Supported by:
    the NSFC(11401010);the NSFC(11571071);the Natural Science Foundation of Anhui Province(1708085MA03);the Distinguished Young Scholars Foundation of Anhui Province(1608085J06)

摘要:

该文在实可分的Hilbert空间中,用不动点方法研究了由分数布朗运动驱动的脉冲中立型随机泛函微分方程温和解的P阶矩的渐近稳定性并举例说明所得结论的可行性.

关键词: 渐近稳定性, 随机发展方程, 分数布朗运动

Abstract:

In this paper, we consider the asymptotic stability in the p-th moment of mild solutions of impulsive neutral stochastic functional differential equations driven by fractional Brownian motion in a real separable Hilbert space. A fixed point approach is used to achieve the required result. A practical example is provided to illustrate the viability of the abstract result of this work.

Key words: Asymptotic stability, Stochastic evolution equations, Fractional Brownian motion

中图分类号: 

  • O211.9