数学物理学报 ›› 2019, Vol. 39 ›› Issue (2): 316-328.
收稿日期:
2018-01-12
出版日期:
2019-04-26
发布日期:
2019-05-05
通讯作者:
房少梅
E-mail:dz90@scau.edu.cn
基金资助:
Hua Qiu1,Changping Xie2,Shaomei Fang3,*()
Received:
2018-01-12
Online:
2019-04-26
Published:
2019-05-05
Contact:
Shaomei Fang
E-mail:dz90@scau.edu.cn
Supported by:
摘要:
该文研究三维具有分数阶耗散项的广义MHD方程,得到了在负指标齐次Besov空间意义下速度场u与磁场b和的正则性准则,推广了已有结论.另外,该文还得到了三维分数阶耗散广义Boussinesq方程光滑解关于速度梯度的一个正则性准则.
中图分类号:
邱华,谢常平,房少梅. 三维广义MHD方程和Boussinesq方程正则性准则的注记[J]. 数学物理学报, 2019, 39(2): 316-328.
Hua Qiu,Changping Xie,Shaomei Fang. Remarks on Regularity Criteria for 3D Generalized MHD Equations and Boussinesq Equations[J]. Acta mathematica scientia,Series A, 2019, 39(2): 316-328.
1 |
Wu J . Generalized MHD equations. J Differential Equations, 2003, 195: 284- 312
doi: 10.1016/j.jde.2003.07.007 |
2 |
Wu J . Regularity criteria for the generalized MHD equations. Comm Partial Differential Equations, 2008, 33: 285- 306
doi: 10.1080/03605300701382530 |
3 |
Zhou Y . Regularity criteria for the generalized viscous MHD equations. Ann Inst H Poncaré Anal Non Linèaire, 2007, 24: 491- 505
doi: 10.1016/j.anihpc.2006.03.014 |
4 |
Wu G . Regularity criteria for the 3D generalized MHD equations in terms of vorticity. Nonlinear Anal, 2009, 71: 4251- 4258
doi: 10.1016/j.na.2009.02.115 |
5 |
Yuan J . Existence theorem and regularity criteria for the generalized MHD equations. Nonlinear Anal Real World Appl, 2010, 11: 1640- 1649
doi: 10.1016/j.nonrwa.2009.03.017 |
6 |
Fan J , Gao H , Nakamura G . Regularity criteria for the generalized magnetohydrodynamic equations and the quasi-geostrophic equations. Taiwan J Math, 2011, 15: 1059- 1073
doi: 10.11650/twjm/1500406284 |
7 |
Fan J , Fukumoto Y , Zhou Y . Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinet Relat Mod, 2013, 6: 545- 556
doi: 10.3934/krm |
8 |
Fan J , Alsaedi A , Hayat T , et al. A regularity criterion for the 3D generalized MHD equations. Math Phys Anal Geom, 2014, 17: 333- 340
doi: 10.1007/s11040-014-9159-0 |
9 |
Yamazaki K . Remarks on the regularity criteria of generalized MHD and Navier-Stokes systems. J Math Phys, 2013, 54: 011502
doi: 10.1063/1.4773833 |
10 | Zhao J , Liu Q . Logarithmically improved regularity criterion for the 3D generalized magneto-hydrodynamic equations. Acta Math Sci, 2014, 34B: 568- 574 |
11 |
Kozono H , Shimada Y . Bilinear estimates in homogeneous Triebel-Lizorkin space and the Navier-Stokes equations. Math Nachr, 2004, 276: 63- 74
doi: 10.1002/(ISSN)1522-2616 |
12 | Chan C H , Vasseur A . Log improvement of the Prodi-Serrin criteria for Navier-Stokes equations. Methods Appl Anal, 2007, 14: 197- 212 |
13 |
Montgomery-Smith S . Conditions implying regularity of the three dimensional Navier-Stokes equation. Appl Math, 2005, 50: 451- 464
doi: 10.1007/s10492-005-0032-0 |
14 |
Zhou Y , Gala S . Logarithmically improved regularity criteria for the Navier-Stokes equations in multiplier spaces. J Math Anal Appl, 2009, 356: 498- 501
doi: 10.1016/j.jmaa.2009.03.038 |
15 |
He C , Xin Z P . On the regularity of weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2005, 213: 235- 254
doi: 10.1016/j.jde.2004.07.002 |
16 |
Zhou Y . Remarks on regularities for the 3D MHD equations. Discrete Contin Dyn Syst, 2005, 12: 881- 886
doi: 10.3934/dcdsa |
17 |
Zhou Y . Regularity criterion for the solutions to the 3D MHD equations in the multiplier space. Z Angew Math Phys, 2010, 61: 193- 199
doi: 10.1007/s00033-009-0023-1 |
18 | Majda A . Introduction to PDEs and Waves for the Atmosphere and Ocean. New York: Amer Math Soc, 2003 |
19 | Pedlosky J . Geophysical Fluid Dynamics. New York: Springer-Verlag, 1987 |
20 | Xiang Z , Yan W . Global regularity of solutions to the Boussinesq equations with fractional diffusion. Adv Differential Equations, 2013, 18: 1105- 1128 |
21 | Ye Z . A note on global well-posedness of solutions to Boussinesq eqautions with fractional dissipation. Acta Math Sci, 2015, 35574: 112- 120 |
22 |
Yamazaki K . On the global regularity of N-dimensional generalized Boussinesq system. Appl Math, 2015, 60: 109- 133
doi: 10.1007/s10492-015-0087-5 |
23 |
Abidi H , Hmidi T . On the global well-posedness for Boussinesq system. J Differential Equations, 2007, 233: 199- 220
doi: 10.1016/j.jde.2006.10.008 |
24 |
Cao C , Wu J . Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation. Arch Rational Mech Anal, 2013, 208: 985- 1004
doi: 10.1007/s00205-013-0610-3 |
25 |
Chae D . Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv Math, 2006, 203: 497- 515
doi: 10.1016/j.aim.2005.05.001 |
26 |
Chae D , Wu J . The 2D Boussinesq equations with logarithmically supercritical velocities. Adv Math, 2012, 230: 1618- 1645
doi: 10.1016/j.aim.2012.04.004 |
27 | Hmidi T , Keraani S . Global well-posedness result for two-dimensional Boussinesq system with a zero diffusivity. Adv Differential Equations, 2007, 12: 461- 480 |
28 |
Hmidi T , Keraani S . Global well-posedness result for two-dimensional Boussinesq system with zero viscosity. Indiana Univ Math J, 2009, 58: 1591- 1618
doi: 10.1512/iumj.2009.58.3590 |
29 | Hmidi T , Keraani S , Rousset F . Global well-posedness for Euler-Boussinesq system with critical dissipation. Comm Partial Differential Equations, 2011, 36: 420- 445 |
30 |
Hmidi T , Zerguine M . On the global well-posedness of the Euler-Boussinesq system with fractional dissipation. Phys D, 2010, 239: 1387- 1401
doi: 10.1016/j.physd.2009.12.009 |
31 | Hou T Y , Li C . Global well-posedness of the viscous Boussinesq equations. Discrete Contin Dyn Syst, 2005, 12: 1- 12 |
32 |
Jiu Q , Miao C , Wu J , Zhang Z . The 2D incompressible Boussinesq equations with general critical dissipation. SIAM J Math Anal, 2014, 46: 3426- 3454
doi: 10.1137/140958256 |
33 |
Larios A , Lunasin E , Titi E S . Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion. J Differential Equations, 2013, 255 (9): 2636- 2654
doi: 10.1016/j.jde.2013.07.011 |
34 |
Miao C , Xue L . On the global well-posedness of a class of Boussinesq-Navier-Stokes systems. Nonlinear Differential Equations Appl, 2011, 18: 707- 735
doi: 10.1007/s00030-011-0114-5 |
35 | Ye Z , Xu X . Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation. Journal of Differential Equations, 2016, 18 (2): 361- 380 |
36 |
Xu X . Global regularity of solutions of 2D Boussinesq equations with fractional diffusion. Nonlinear Anal, 2010, 72 (2): 677- 681
doi: 10.1016/j.na.2009.07.008 |
37 |
Fan J , Zhou Y . A note on regularity criterion for the 3D Boussinesq system with partial viscosity. Appl Math Lett, 2009, 22: 802- 805
doi: 10.1016/j.aml.2008.06.041 |
38 | Triebel H . Theory of Function Spaces. Boston: Birkauser Verlag, 1983 |
39 | Gagliardo E . Proprietà di alcune classi di funzioni in più variabili. Ricerche di Matem, 1958, 7: 102- 137 |
40 | Nirenberg L . On elliptic partial differential equations. Ann Scuola Norm Sup Pisa, 1959, 13: 115- 162 |
41 |
Kato T , Ponce G . Commutator estimates and the Euler and Navier-Stokes equations. Commun Pure Appl Math, 1988, 41: 891- 907
doi: 10.1002/(ISSN)1097-0312 |
42 |
Kozono H , Ogawa T , Taniuchi Y . The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math Z, 2002, 242: 251- 278
doi: 10.1007/s002090100332 |
43 | Lei Z , Zhou Y . BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete Contin Dyn Syst, 2009, 42: 575- 583 |
44 |
Fujita H , Kato T . On the Navier-Stokes initial value problem I. Arch Ration Mech Anal, 1964, 16: 269- 315
doi: 10.1007/BF00276188 |
45 |
Kato T . Nonstationary flows of viscous and ideal fluids in $\mathbb{R}$3. J Funct Anal, 1972, 9: 296- 305
doi: 10.1016/0022-1236(72)90003-1 |
[1] | 尚朝阳. 不可压缩磁流体方程组在Besov空间中的爆破准则[J]. 数学物理学报, 2019, 39(1): 67-80. |
[2] | 赵继红. 三维耗散型电流体动力学系统弱解的正则性准则[J]. 数学物理学报, 2018, 38(3): 549-564. |
[3] | 蔡钢. Banach空间上有限时滞退化微分方程的适定性[J]. 数学物理学报, 2018, 38(2): 264-275. |
[4] | 方敬轩, 赵纪满. Stratified群上的变指标齐次Besov空间和Triebel-Lizorkin空间[J]. 数学物理学报, 2018, 38(1): 34-45. |
[5] | 张祖锦. 三维Navier-Stokes 方程组关于速度梯度两个分量的正则性准则的一个改进[J]. 数学物理学报, 2014, 34(5): 1327-1335. |
[6] | 赵凯, 李澎涛. 区域上Besov空间的分子分解及其应用[J]. 数学物理学报, 2013, 33(5): 926-936. |
[7] | 边东芬, 原保全. 广义Navier-Stokes方程弱解的正则性[J]. 数学物理学报, 2011, 31(6): 1601-1609. |
[8] | 周疆, 曹勇辉, 马柏林. Morrey型空间上的禁止类双线性拟微分算子[J]. 数学物理学报, 2011, 31(2): 335-342. |
[9] | 孙建筑, 樊继山. 截断Euler方程的两流体模型的正则性准则[J]. 数学物理学报, 2010, 30(6): 1693-1698. |
[10] | 徐景实. Herz型Besov和Triebel-Lizorkin空间的原子分解[J]. 数学物理学报, 2009, 29(6): 1500-1507. |
[11] | 王衡庚, 陶祥兴. 区域上Besov空间的分子分解及其在偏微分方程中的应用[J]. 数学物理学报, 2003, 23(4): 449-455. |
[12] | 李松. 二元Bernstein-Kantororich算子的逼近性质[J]. 数学物理学报, 1995, 15(3): 352-360. |
|