数学物理学报 ›› 2019, Vol. 39 ›› Issue (2): 307-315.

• 论文 • 上一篇    下一篇

拟线性椭圆系统非径向爆破解的非存在性

计婷1,胡良根1,*(),曾晶2   

  1. 1 宁波大学数学系 浙江宁波 315211
    2 福建师范大学数学与计算机学院 福州 350007
  • 收稿日期:2017-10-12 出版日期:2019-04-26 发布日期:2019-05-05
  • 通讯作者: 胡良根 E-mail:hulianggen@tom.com
  • 基金资助:
    国家自然科学基金(11471174);国家自然科学基金(11501110);浙江省自然科学基金(LY17A010007);宁波市自然科学基金(2018A610194)

The Non-Existence of Non-Radial Blow-Up Solutions for the Quasilinear Elliptic System

Ting Ji1,Lianggen Hu1,*(),Jing Zeng2   

  1. 1 Department of Mathematics, Ningbo University, Zhejiang Ningbo 315211
    2 School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007
  • Received:2017-10-12 Online:2019-04-26 Published:2019-05-05
  • Contact: Lianggen Hu E-mail:hulianggen@tom.com
  • Supported by:
    the NSFC(11471174);the NSFC(11501110);the Natural Science Foundation of Zhejiang Province(LY17A010007);the Natural Science Foundation of Ningbo(2018A610194)

摘要:

该文考虑拟线性椭圆系统

其中$i=1, \cdots, m$, $p_i \ge 2$, $\zeta_i$$\eta_i$是正连续函数, $f_i$是非负连续函数且关于每个分量是非减的.通过应用新建立的比较原理证明系统不存在非径向爆破解.

关键词: 拟线性椭圆系统, 比较原理, 非存在性, 爆破解

Abstract:

In this paper, we consider the following quasilinear elliptic system

where $i=1, \cdots, m$, $p_i\ge 2$, $\zeta_i$ and $\eta_i$ are positive continuous functions, and $f_i$ is a non-negative continuous function and nondecreasing in each component for every $i\in \{1, 2, \cdots, m\}$. After using some new comparison principle, we are able to show that the system does not admit any nonradial blow-up solutions.

Key words: Quasilinear elliptic system, Comparison principle, Nonexistence, Blow-up solution

中图分类号: 

  • O175.25