数学物理学报 ›› 2018, Vol. 38 ›› Issue (3): 599-612.

• 论文 • 上一篇    下一篇

时变切换信号驱动的线性连续切换系统的迭代学习控制收敛性分析

杨轩1, 阮小娥2, 王彭3   

  1. 1 西安工程大学理学院 西安 710048;
    2 西安交通大学数学与统计学院 西安 710049;
    3 中国人民解放军63771部队 陕西渭南 714000
  • 收稿日期:2017-04-06 修回日期:2017-10-16 出版日期:2018-06-26 发布日期:2018-06-26
  • 通讯作者: 杨轩 E-mail:yangxuan@xpu.edu.cn
  • 作者简介:阮小娥,E-mail:wruanxe@xjtu.edu.cn;王彭,E-mail:xajdwangpeng@126.com
  • 基金资助:
    西安工程大学博士基金(BS1617)

Convergence Analysis of Iterative Learning Control for Linear Continuous-Time Switched Systems with Arbitrary Time-Driven Switching Rules

Yang Xuan1, Ruan Xiaoe2, Wang Peng3   

  1. 1 School of Science, Xi'an Polytechnic University, Xi'an 710048;
    2 School of Mathematics and Statistics, Xian Jiaotong University, Xi'an 710049;
    3 Troops 63771 of PLA, Shaanxi Weinan 714000
  • Received:2017-04-06 Revised:2017-10-16 Online:2018-06-26 Published:2018-06-26
  • Supported by:
    Supported by the Doctoral Foundation of Xi'an Polytechnic University (BS1617)

摘要: 针对一类由任意时变切换信号驱动并在某个时间区间可重复运行的切换系统,该文研究一阶和高阶PD-型迭代学习控算法.利用卷积积分的广义Young不等式,在Lebesgue-p范数意义下分析跟踪误差性态,得出算法收敛的充分条件,并量化了状态矩阵对学习效果的影响.数值仿真验证了理论结果的可行性和有效性.

关键词: 迭代学习控制, 切换系统, 切换律, Lebesgue-p范数, 广义Young不等式, 收敛性

Abstract: This paper addresses the convergence performance of first-order and higher-order PD-type iterative learning control strategies for a class of linear continuous-time switched systems. The manipulated systems are elaborated by arbitrary time-driven switching signals and can repetitively operate over a finite time interval. By employing the generalized Young inequality of convolution integral theoretical analysis is launched in the sense of Lebesgue-p norm. Simultaneously, sufficient convergence conditions of the algorithms are derived and the effect of the state matrices on the learning performance is quantized. To illustrate the validity and effectiveness of the theoretical results, numerical simulations are conducted.

Key words: Iterative learning control, Switched systems, Switching rules, Lebesgue-p norm, Generalized Young inequality, Convergence

中图分类号: 

  • O231.1