[1] Shi T, Wang J. Reconstruction of the attenuated Radon transform in π-scheme short-scan SPECT. Acta Mathematica Scientia, 2013, 33B(6):1615-1626 [2] Guo J, Wang J. Convergence analysis of the loping OS-EM iterative version of the circular Radon transform. Acta Mathematica Scientia, 2014, 34B(6):1875-1884 [3] Shen Z, Wang J. The research of complex analytic method in SPECT image reconstruction. Applicable Analysis, 2014, 93(11):2451-2461 [4] Shen Z, Wang J. The improved reconstruction method for nonuniform attenuated SPECT data. Acta Mathematica Scientia, 2015, 35B(3):527-538 [5] Novikov R G. An inversion formula for the attenuated x-ray transformation. Ark Mat, 2002, 40:145-167 [6] Natterer F. Inversion of the attenuated Radon transform. Inverse Problems, 2001, 17:113-119 [7] You J. The attenuated Radon transform with complex coefficients. Inverse Problems, 2007, 23:1963-1971 [8] You J. A revisit to the inverse exponential radon transform. 2007. http://www.cubic-imaging.com/Papers/IERT Review.pdf [9] Huang Q, You J, Zeng G L. Reconstruction from uniformly attenuated SPECT projection data using the DBH method. IEEE Trans Med Imaging, 2009, 28:17-29 [10] Tretiak O J, Metz C. The exponential Radon transform. SIAM J Appl Math, 1980, 39:341-354 [11] Shepp L A, Logan B F. The Fourier reconstruction of a head section. IEEE Trans Nucl Sci, 1974, 21:21-43 [12] Natterer F. The Mathematics of Computerized Tomography. New York:Wiley, 1986 [13] You J, Zeng G L. Hilbert transform based FBP algorithm for fan-beam CT full and partial scans. IEEE Trans Med Imaging, 2007, 26:190-199 [14] You J, Zeng G L. Explicit finite inverse Hilbert transforms. Inverse Problems, 2006, 22:7-10 [15] Atkinson K E. A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind. Philadelphia:Society for Industrial and Applied Mathematics, 1976 [16] Delves L M, Mohamed J L. Computational Methods for Integral Equations. Cambridge:Cambridge University Press, 1985 |