[1] Coullet P, Elphick C, Repaux D. Nature of spatial chaos. Phys Rev Lett, 1987, 58(5):431-434 [2] Dee G T, Van S W. Bistable systems with propagating fronts leading to pattern formation. Phys Rev Lett, 1988, 60(25):2641-2644 [3] Aronson D G, Weinberger H F. Multidimensional nonlinear diffusion arising in population genetics. Adv Math, 1978, 30(1):33-76 [4] Hornreich R M, Luban M, Shtrikman S. Critical behaviour at the onset of k-space instability on the λ line. Phys Rev Lett, 1975, 35(22):1678-1681 [5] Kadri T, Omrani K. A second-order accurate difference scheme for an extended Fisher-Kolmogorov equation. Comput Math Appl, 2011, 61(2):451-459 [6] Danumjaya P, Pani A K. Numerical methods for the Existended Fisher-Kolmogorov (EFK) equation. Int J Numer Anal Model, 2006, 3(2):186-210 [7] Pei L F. Research on new C0-nonconforming finite element schemes and superconvergence analysis[D]. 2014:66-82 [8] Li J. Optimal convergence analysis of mixed finite element methods for a fourth-order elliptic and parabolic problems. Numer Methods Partial Differential Equations, 2006, 22(4):884-896 [9] 李宏, 刘洋. 一类四阶抛物型积分-微分方程的混合间断时空有限元方法. 计算数学, 2007, 29(4):413-420 Li H, Liu Y. Mixed discontionous space-time finite element method for the fourth order parabolic integrodifferential equations. Math Numer Sini, 2007, 29(4):413-420 [10] 石东洋, 史艳华, 王芬玲. 四阶抛物方程的H1-Galerkin混合有限元方法的超逼近及最优误差估计. 计算数学, 2014, 36(4):363-380 Shi D Y, Shi Y H, Wang F L. Supercloseness and the optimal order error estimates of H1-Galerkin mixed finite element method for fourth order parabolic equation. Math Numer Sini, 2014, 36(4):363-380 [11] 刘洋, 李宏, 何斯日古楞,等. 四阶抛物偏微分方程的H1-Galerkin混合元方法及数值模拟. 计算数学,2012, 34(4):259-274 Liu Y, Li H, He S, et al. H1-Galerkin mixed element method and numerical simulation for the fourth order parabolic partial differential equations. Math Numer Sini, 2012, 34(4):259-274 [12] 何斯日古楞, 李宏. 带广义边界条件的四阶抛物型方程的混合间断时空有限元方法. 计算数学, 2009, 31(2):167-178 He Siriguleng, Li H. The mixed discontinuous space-time finite element method for the fourth order linear parabolic equation with generalized boundary condition. Math Numer Sini, 2009, 31(2):167-178 [13] 陈绍春, 陈红如. 二阶椭圆问题新的混合元格式. 计算数学, 2010, 32(2):213-218 Chen S C, Chen H R. New mixed element schemes for second order elliptic problem. Math Numer Sini, 2010, 32(2):213-218 [14] 史峰, 于佳平, 李开泰. 椭圆型方程的一种新型混合有限元格式. 工程数学学报,2011, 28(2):231-237 Shi F, Yu J P, Li K T. A new mixed finite element scheme for elliptic equation. J Enging Math, 2011, 28(2):231-237 [15] 石东洋, 李明浩. 二阶椭圆问题一种新格式的高精度分析. 应用数学学报, 2014, 37(1):45-58 Shi D Y, Li M H. High accuracy analysis of new schemes for second order elliptic problem for recurrent event data. Acta Math Appl Sini, 2014, 37(1):45-58 [16] Wang J F, Li H, He Siriguleng. A New linearized Crank-Nicolson mixed element scheme for the Extended Fisher-Kolmogorov equation. The Scientific World Journal, 2013, 2013(1):202-212 [17] Chen Z X. Expanded mixed finite element methods for linear second order elliptic problems I. ESAIM Math Model Numer Anal, 1998, 32(4):479-499 [18] Danumjaya P, Pani A K. Mixed finite element methods for a fourth order reaction diffusion equation. Numer Methods Partial Differential Equations, 2012, 28(4):1227-1251 [19] Lin Q, Tobiska L, Zhou A H. Superconvergence and extrapolation of nonconformimg low order finite elements applied to the Poisson equation. IMA J Numer Anal, 2005, 25(1):160-181 [20] Shi D Y. Mao S P. Chen S C. An anisotropic nonconforming finite element with some superconvergence results. J Comput Math, 2005, 23(3):261-274 [21] Shi D Y, Ren J C. Nonconforming mixed finite element approximation to the stationary Navier-Stokes equations on anisotropic meshes. Nonlinear Anal, 2009, 71(9):3842-3852 [22] Shi D Y, Zhang B Y. High accuracy analysis of the finite element method for nonlinear viscoelastic wave equations with nonlinear boundary conditions. J Syst Sci Complex, 2011, 24(4):795-802 [23] 张铁. Cahn-Hilliard方程的有限元分析. 计算数学,2006, 28(3):281-292 Zhang T. Finite element analysis for Cahn-Hilliard equation. Math Numer Sini, 2006, 28(3):281-292 [24] 石东洋, 张厚超, 王瑜. 一类非线性四阶双曲方程扩展的混合元方法的超收敛分析. 计算数学,2016, 38(1):65-82 Shi D Y, Zhang H C, Wang Y. Superconvergence analysis of an expanded mixed finite element method for nonlinear fourth-order hyperbolic equation. Math Numer Sini, 2016, 38(1):65-82 [25] 张厚超, 石东洋. 非线性四阶双曲方程低阶混合元方法的超收敛分析. 数学物理学报,2016, 36A(4):656-671 Zhang H C, Shi D Y. Superconvergence analysis of a lower order mixed finite element method for nonlinear fourth-order hyperbolic equation. Acta Math Sci, 2016, 36A(4):656-671 [26] Rannacher R, Turek S. Simple nonconforming quadrilateral Stokes element. Numer Methods Partial Differential Equations, 1992, 8(2):97-111 [27] Park C J, Sheen D W. P1-nonconforming quadrilateral finite element method for second order elliptic problems. SIAM J Numer Anal, 2003, 41(2):624-640 [28] Hu J, Shi Z C. Constrained quadrilateral nonconforming rotated Q1 element. J Comput Math, 2005, 23(5):561-586 [29] Lin Q, Lin J F. Finite Element Method:Accuracy and Improvement. Beijing:Scicence Press, 2006 [30] Shi D Y, Xu C. Anisotropic nonconforming Crouzeix-Raviart type FEM for second order elliptic problems. Appl Math Mech Eng-Ed, 2012, 33(2):243-252 [31] Shi D Y, Wang F L, Zhao Y M. Superconvergence analysis and extrapolation of quasi-Wilson nonconforming finite element method for nonlinear Sobolev equations. Acta Math Appl Sin Engl Ser, 2013, 29(2):403-414 [32] Shi D Y, Hao X B. Accuracy analysis for quasi-Carey element. J Syst Sci Complex, 2008, 21(3):456-462 [33] Shi Z C, Jiang B, Xue W M. A new superconvergence property of Wilson nonconforming finite element. Numer Math, 1997, 78(2):259-268 [34] Shi D Y, Chen S C, I.Hagiwara. Convergence analysis for a nonconforming membrane element on anistropic meshes. J Comput Math, 2005, 23(4):373-382 [35] Khiari N, Omrani K. Finite difference discretization of the extended Fisher-Kolmogorov equation in two dimensions. Comput Math Appl, 2011, 62(11):4151-4160 |