[1] 华罗庚, 万哲先. 典型群. 上海:上海科学技术出版社, 1963 Hua L K, Wan Z X. Classical Groups. Shanghai:Shanghai Sci & Tech Press, 1963 [2] Frobenius F G. Uber lineare Substitutionen und bilineare Formen. Journal Fur Die Reine und Angewandte Mathematik, 1878, 84:1-63 [3] Palasis R S. The classification of real division algebras. Amer Math Monthly, 1968, 75:366-368 [4] 华罗庚. 多复变数函数论中典型域的调和分析. 北京:科学出版社, 1958 Hua L K. Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Beijing:Science Press, 1958 [5] Hua L K, Lu Q K. Theory of harmonic function in classical domains. Science Sinica, 1959, 10:1031-1094 [6] 陆启铿. 典型流形与典型域. 上海:上海科学技术出版社, 1963 Lu Q K. Classical Manifolds and Classical Domains. Shanghai:Shanghai Sci & Tech Press, 1963 [7] 龚升. 典型群上的调和分析. 北京:科学出版社, 1983 Gong S. Harmonic Analysis for Classical Groups. Beijing:Science Press, 1983 [8] 郑学安. 紧致齐性空间上的调和分析. 上海:上海科学技术出版社, 2000 Zheng X A. Harmonic Analysis for Compact Homogeneous Spaces. Shanghai:Shanghai Sci & Tech Press, 2000 [9] 孙继广. 一种有界对称域的调函数. 中国科学技术大学学报, 1973, 2:55-67 Sun J G. Harmonic functions for a bounded symmetric domain. Journal of University of Sci & Tech of China, 1973, 2:55-67 [10] Helgason S. Differential Geometry and Symmetric Spaces. Now York:Academic Press, 1962 [11] Yamamori A. The Bergman kernel of a certain Hartogs domain and the polylogarithm function. 2010, arXiv:1008.5339 [12] Koufany K, Zhang G. Hua operators and Poisson transform for bounded symmetric domains. J Funct Anal, 2006, 236:564-580 [13] Koufany K, Zhang G. Hua operators, Poisson transform and relative discrete series on line bundles over bounded symmetric domains. J Funct Anal, 2012, 262:4140-4159 [14] Boussejra A, Koufany K. Characterization of Poisson integrals on non-tube bounded symmetric domains. J Math Pure Appl, 2007, 87:438-451 [15] 汪成咏, 渠刚荣, 汪睿敏. 矩阵空间上的积分. 数学物理学报,2013, 33A:253-259 Wang C, Qu G, Wang R. Integrals on matrix spaces. Acta Math Sci, 2013, 33A:253-259 [16] 陆启铿, 邹振隆, 郭汉英. 典型时空中的运动效应和宇观红移现象. 物理学报, 1974, 23:225-238 Lu Q K, Zou Z L, Guo H Y. The kinematic effects in the classical domains and the red-shift phenomena of extra-galactic objects. Acta Physica Sinica, 1974, 23:225-238 [17] Perlummutter S, et al. Measurements of the cosmological parameters Ω and ∧ from the first seven supernovae at z ≥ 0.35. Astrophys J, 1997, 483:565-581 [18] Perlummutter S, et al. Measurements of Ω and ∧ from 42 high-redshift supernovae. Astrophys J, 1999, 517:565-586 [19] Bennet C L, et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations preliminary maps and basic results. Astrophys J Suppl, 2003, 148:1-27 [20] Guo H Y, Huang C G, et al. On special relativity with cosmological constant. Phys Lett A, 2004, 331:1-7 [21] Tian Y, Guo H Y, et al. Mechanics and Newton-Cartan-like gravity on the Newton-Hooke space-time. Phys Rev D, 2005, 71:044030 [22] Guo H Y, Huang C G, Zhou B. Temperature at horizon in de Sitter spacetime. Euro Phys Lett, 2005, 72:1045-1051 [23] Guo H Y. On principle of inertia in closed universe. Phys Lett B, 2007, 653:88-94 [24] Guo H Y, Zhou B, et al. Triality of conformal extensions of three kinds of special relativity. Phys Rev D, 2007, 75:026006 [25] Guo H Y, Huang C G, et al. Snyder's model-de Sitter special relativity duality and de Sitter gravity. Class Quant Grav, 2007, 24:4009-4035 [26] Guo H Y. Special relativity and theory of gravity via maximum symmetry and localization. Sci Chin Series A Math, 2008, 51:568-603 [27] Guo H Y, Wu H T, Zhou B. The principle of relativity and the special relativity triple. Phys Lett B, 2009, 670:437-441 [28] Guo H Y, Huang C G, et al. The principle of relativity, kinematics and algebraic relations. Sci Chin:Physics, Mechanics &Astronomy, 2010, 53:591-597 [29] Maldacena J. The large N limit of super conformal field theories and supergravity. Adv Theor Math Phys, 1998, 2:231-252 [30] Witten E. Anti-de-Sitter space and holograph. Adv Theor Math Phys, 1998, 2:253-291 [31] Chang Z, Guo H Y. Symmetry realization, Poisson kernel and the AdS/CFT correspondence. Mod Phys Lett A, 2000, 15:407-416 [32] Lu Q K, Chang Z, Guo H Y. Global geometry properties of AdS space and AdS/CFT correspondence. Sci Chin Series A, 2001, 44:690-695 [33] Lu Q K. Hua operator on vector bundle:Application to AdS/CFT correspondence of Dirac fields. Sci Chin Series A, 2005, 48:413-431 |