[1] Reed W H, Hill T R. Triangular Mesh Methods for the Neutron Transport Equation. Tech Report LA-UR-73-479. Los Alamos, NM:Los Alamos Scientific Laboratory, 1973 [2] Douglas J, Dupont T. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods. Berlin:Springer-Verlag, 1976 [3] Arnold D N. An interior penalty finite element method with discontinuous elements. SIAM J Numer Anal, 1982, 19:742-760 [4] Arnold D N, Brezzi F, Cockburn B, Marini D. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal, 2001, 39:1749-1779 [5] Babuska I. The finite element method with penalty. Math Comput, 1973, 27:221-228 [6] Babuska I, Zlamal M. Nonconforming elements in the finit elements method with penalty. SIAM J Numer Anal, 1973, 10:863-875 [7] Cao J W, Ge Z H. A new posteriori error estimates for a discontinuous Galerkin method for a reaction-diffusion problem. Appl Math Comp, 2015, 256:735-741 [8] Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J Comp Phys, 1997, 131:267-279 [9] Brezzi F, Manzini G, Marini D, Pietra P, Russo A. Discontinuous Galerkin approximations for elliptic problems. Numer Methods Partial Diff Eq, 2000, 16:365-378 [10] Castillo P, Cockburn B, Perugia I, Schotzau D. An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J Numer Anal, 2000, 38:1676-1706 [11] Wheeler M F. An elliptic collocation-finite element method with interior penalities. SIAM J Numer Anal, 1978, 15:152-161 [12] Riviere B, Wheeler M F, Girault V. Improved enery estimates for interior penality, constrained and discontinuous Galerkin methods for elliptic problems, Part I. Computational Geosciences, 1999, 3:337-360 [13] Cockburn B, Shu C W. The local discontinuous Galerkin finite element method for convection-diffusion systems. SIAM J Numer Anal, 1998, 35:2440-2463 [14] Babuska I, Baumann C, Oden J. A discontinuous hp-finite element method for diffusion problems:1-D analysis. Comp Appl Math, 1999, 37:103-122 [15] Oden J, Baumann C E. A discontinuous hp finite element method for the Euler and Navier-Stokes equations. International Journal of Numerical Methods in Fluids, 1999, 31(1):79-95 [16] Ge Z H, Cao J W. A new variational formulation for a kind of reaction-diffusion problem in broken Sobolev space. Chinese Quarterly Journal of Mathematics, 2017, 32:134-141 [17] Romkes A, Prudhomme S, Oden J T. A priori error analyses of a stabilized discontinuous Galerkin method, Computers & Mathematics with Applications, 2003, 46:1289-1311 [18] Oden J T, Babuska I, Baumann C E. A discontinuous hp finite element method for diffusion problem. J Comp Phys, 1998, 146:491-519 [19] Percell P, Wheeler M F. A local residual finite element procedure for elliptic equations. SIAM J Numer Anal, 1978, 15:705-714 [20] Riviere B. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations:Theory and Implementation. Philadelphia:SIAM, 2008 [21] Brenner S, Scott R. The Mathematical Theory of Finite Element Methods. New York:Springer, 2007 |