[1] Agarwal R P, Benchohra M, Hamani S. Boundary value problems for fractional differential equations. Georgian Math J, 2009, 16:401-411 [2] Su X. Solutions to boundary value problem of fractional order on unbounded domains in Banach space. Nonlinear Anal, 2011, 74:2844-2852 [3] Zhang S. The uniqueness result of solutions to initial value problems of differential equations of variable-order. Rev R Acad Cienc Exactas Fís Nat Ser A Mat, 2017, DOI:10.1007/s13398-017-0389-4 [4] Sun H, Chen W, Chen Y. Variable-order fractional differential operators in anomalous diffusion modeling. Phys A, 2009, 388:4586-4592 [5] Zhang S. Existence of solutions for two-point boundary-value problems with singular differential equations of variable order. Electron J Differential Equations. 2013, 2013:1-16 [6] Sun H, Chen W, Wei H, Chen Y. A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur Phys J Special Topics, 2011, 193:185-192 [7] Chan C, Shu J, Yang R. Iterative design of variable fractional-order ⅡR differintegrators. Signal Process, 2010, 90:670-678 [8] Ross B. Fractional integration operator of variable-order in the Hölder space Hλ(x). Internat J Math and Math Sci, 1995, 18:777-788 [9] Valério D, Costa J S. Variable-order fractional derivatives and their numerical approximations. Signal Process, 2011, 91:470-483 [10] Razminia A, Dizaji A F, Majd V J. Solution existence for non-autonomous variable-order fractional differential equations. Math Comput Model, 2012, 55:1106-1117 [11] Lin R, Liu F, Anh V, Turner I. Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl Math Comput, 2009, 2:435-445 [12] Sierociuk D, Malesza W, Macias M. Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Appl Math Model, 2015, 39:3876-3888 [13] Umarov S, Steinber S. Variable order differential equations and diffusion processes with changing modes. Math Phys, 2009, 2009:1-20 [14] Zhao X, Sun Z, EmKarniadakis G. Second-order approximations for variable order fractional derivatives:Algorithms and applications. J Comput Phys, 2015, 293:184-200 [15] Atangana A. On the stability and convergence of the time-fractional variable order telegraph equation. J Comput Phys, 2015, 293:104-114 [16] Li X, Wu B. A numerical technique for variable fractional functional boundary value problems. Appl Math Lett, 2015, 43:108-113 [17] Kilbas A A, Srivastava H M, Trujillo J J. Theory and applications of fractional differential equations. Amsterdam:Elsevier B V, 2006 [18] Dreher M, Jüngel A. Compact families of piecewise constant functions in Lp (0, T; B). Nonlinear Anal, 2012, 75:3072-3077 [19] Lakshmikanthama V, Vatsala A S. Basic theory of fractional differential equations. Nonlinear Anal, 2008, 69:2677-2682 [20] Kou C, Zhou H, Yan Y. Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis. Nonlinear Anal, 2011, 74:5975-5986 [21] Baleanu D, Mohammadi H, Rezapour S. Positive solutions of an initial value problem for nonlinear fractional differential equations. Abstr Appl Anal, 2012, 2012:1-7 [22] Li X, Wu B. A numerical technique for variable fractional functional boundary value problems. Appl Math Lett, 2015, 43:108-113 [23] 姚庆六. 一个非线性分数微分方程奇异解的存在性与逐次迭代方法. 数学物理学报, 2016, 36A:287-296 Yao Q. Existence and successively iterative method of singular solution to a nonlinear fractional differential equation. Acta Math Sci, 2016, 36A:287-296 [24] 邓继勤, 邓子明. 分数阶微分方程非局部柯西问题解的存在和唯一性. 数学物理学报, 2016, 36A:1157-1164 Deng J, Deng Z. Existence and uniqueness of solutions for nonlocal Cauchy problem for fractional evolution equations. Acta Math Sci, 2016, 36A:1157-1164 |