数学物理学报 ›› 2017, Vol. 37 ›› Issue (5): 917-930.

• 论文 • 上一篇    下一篇

压力消失时具有广义Chaplygin气体的Aw-Rascle交通模型Riemann解的极限

李华惠, 邵志强   

  1. 福州大学数学与计算机科学学院 福州 350116
  • 收稿日期:2016-11-27 修回日期:2017-04-15 出版日期:2017-10-26 发布日期:2017-10-26
  • 通讯作者: 邵志强,E-mail:zqshao@fzu.edu.cn E-mail:zqshao@fzu.edu.cn
  • 作者简介:李华惠,E-mail:792189950@qq.com
  • 基金资助:
    福建省自然科学基金(2015J01014)

Vanishing Pressure Limit of Riemann Solutions to the Aw-Rascle Model for Generalized Chaplygin Gas

Li Huahui, Shao Zhiqiang   

  1. College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116
  • Received:2016-11-27 Revised:2017-04-15 Online:2017-10-26 Published:2017-10-26
  • Supported by:
    Supported by the Natural Science Foundation of Fujian Province (2015J01014)

摘要: 该文研究带有广义Chaplygin气体的Aw-Rascle(AR)交通模型的黎曼问题.在广义Rankine-Hugoniot条件和熵条件下,证明了Delta激波存在唯一性.Delta激波有助于描述严重的交通拥堵.更重要的是,证实了广义Chaplygin气体的Aw-Rascle交通模型的黎曼解在交通压力消失时收敛于带相同的初值无压气体动力学系统的黎曼解.

关键词: AR交通模型, 黎曼解, 广义R-H条件, Delta激波, Chaplygin压力, 熵条件

Abstract: The Riemann problem for the Aw-Rascle (AR) traffic model with generalized Chaplygin gas is considered. Its first eigenvalue is genuinely nonlinear and the second eigenvalue is linearly degenerate, but the nonclassical solutions appear. The Riemann solutions are constructed, and the generalized Rankine-Hugoniot conditions and the δ-entropy condition are clarified. In particular, the existence and uniqueness of δ-shock waves are established under the generalized Rankine-Hugoniot conditions and entropy condition. The delta shock may be useful for description of the serious traffic jam. More importantly, it is proved that the limits of the Riemann solutions of the above AR traffic model are exactly those of the pressureless gas dynamics system with the same Riemann initial data as the traffic pressure vanishes.

Key words: Aw-Rascle traffic model, Generalized Chaplygin pressure, Riemann problem, Generalized Rankine-Hugoniot relation, Delta shock wave, Entropy condition

中图分类号: 

  • O175.29