[1] Reshef, David N, et al. Detecting novel associations in large data sets. Science, 2011, 334(6062):1518-1524 [2] Steuer R, et al. The mutual information:detecting and evaluating dependencies between variables. Bioinformatics, 2002, 18(suppl 2):S231-S240 [3] Heller R, Heller Y, Gorfine M. A consistent multivariate test of association based on ranks of distances. Biometrika, 2013, 100(2):503-510 [4] Jiang Hangjin, Wu Qiongli. Robust dependence measure for detecting associations in large data set. Submitted to Acta Mathematica Scientia [5] Rényi A. On measures of dependence. Acta Mathematica Hungarica, 1959, 10(3):441-451 [6] Moon Y, Rajagopalan B, Lall U. Estimation of mutual information using kernel density estimators. Physical Review E, 1995, 52(3):2318-2321 [7] Fernandes A D, Gregory B G. Mutual information is critically dependent on prior assumptions:would the correct estimate of mutual information please identify itself? Bioinformatics, 2010, 26(9):1135-1139 [8] Gretton A, Herbrich R, Smola A. The kernel mutual information. 2003, DOI:10.1109/ICASSP.2003.1202784 [9] Bach F R, Jordan M I. Kernel independent component analysis. Journal of Machine Learning Research, 2003, DOI:10.1109/ICASSP.2003.1202783 [10] Gretton A, et al. Measuring Statistical Dependence with Hilbert-Schmidt Norms//Jain S, et al. Algorithmic Learning Theory. Berlin:Springer, 2005 [11] Schweizer B, Wolff E F. On nonparametric measures of dependence for random variables. The Annals of Statistics, 1981, 9(4):879-885 [12] Székely G J, Rizzo M L. Brownian distance covariance. The Annals of Applied Statistics, 2009, 3(4):1236-1265 [13] Gretton A, et al. A kernel two-sample test. Journal of Machine Learning Research, 2012, 13(1):723-773 [14] Póczos B, Ghahramani Z, Schneider J. Copula-based kernel dependency measures. 2012, arXiv:1206.4682 [15] Yin X R. Canonical correlation analysis based on information theory. Journal of Multivariate Analysis, 2004, 91(2):161-176 [16] Delicado P, Smrekar M. Measuring non-linear dependence for two random variables distributed along a curve. Statistics and Computing, 2009, 19(3):255-269 [17] Lopez-Paz D, Hennig P, Schölkopf B. The randomized dependence coefficient. Advances in Neural Information Processing Systems, 2013:1-9 [18] Linfoot E H. An informational measure of correlation. Information and Control, 1957, 1(1):85-89 [19] Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 1988, 52(1):479-487 [20] Tan Q H, Jiang H J, Ding Y M. Model selection method based on maximal information coefficient of residuals. Acta Mathematica Scientia, 2014, 34(2):579-592 [21] Gretton A, et al. Kernel methods for measuring independence. Journal of Machine Learning Research, 2005, 6:2075-2129 [22] Bryc W, Dembo A, Kagan A. On the maximum correlation coefficient. Theory of Probability and Its Applications, 2005, 49(1):132-138 [23] Breiman L, Friedman J H. Estimating optimal transformations for multiple regression and correlation. Journal of the American Statistical Association, 1985, 80(391):580-598 [24] Papadatos N, Xifara T. A simple method for obtaining the maximal correlation coefficient and related characterizations. Journal of Multivariate Analysis, 2013, 118:102-114 [25] Dembo A, Kagan A, Shepp L A. Remarks on the maximum correlation coefficient. Bernoulli, 2001, 7(2):343-350 [26] Nelsen R B. An Introduction to Copulas. New York:Springer, 2006 [27] Shannon C E. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1):3-55 [28] Sugiyama M, Yamada M. On kernel parameter selection in hilbert-schmidt independence criterion. IEICE TRANSACTIONS on Information and Systems, 2012, 95(10):2564-2567 [29] Sejdinovic D, et al. Equivalence of distance-based and RKHS-based statistics in hypothesis testing. The Annals of Statistics, 2013, 41(5):2263-2291 [30] Micchelli C A, Xu Y S, Zhang H Z. Universal kernels. Journal of Machine Learning Research, 2006, 7(4):2651-2667 |