[1] Meyers N G, Elcrat A. Some results on regularity for solutions of nonlinear elliptic systems and quasiregular functions. Duke Math J, 1975, 42:121-136 [2] Li G B, Martio O. Local and global integrabilty of gradients in obstacle problems. Ann Acad Sci Fenn Ser A I Math, 1994, 19:25-34 [3] Stroffolini B. Glogal boundedness of solutions of anisotropic variational problem. Boll Unione Mat Ital Sez A Mat Soc Cult, 1991, 5:345-352 [4] Giachetti D, Porzio M M. Local and global integrability of gradients in functional of the calculus of variation. Nonlinear Analysis, 2000, 39:463-482 [5] Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton, NJ:Princeton University Press, 1983 [6] Fusco N, Sbordone C. Local boundedness of minimizers in a limit case. Manuscripta Math, 1990, 69:19-25 [7] Gao H Y, Tian H Y. Local regularity result for solutions of obstacle problems. Acta Math Sci, 2004, 24B(1):71-74 [8] 高红亚, 褚玉明, 拟正则映射与A -调和方程. 北京:科学出版社, 2013 Gao H Y, Chu Y M. Quasiregular Mappings and A-Harmonic Equation. Beijing:Science Press, 2013 [9] Gao H Y, Huang Q H. Local regularity for solutions of anisotropic obstacle problems. Nonlinear Analysis, TMA, 2012, 75(13):4761-4765 [10] Gao H Y. Regularity for solutions to anisotropic obstacle problems. Sci China Math, 2014, 57(1):111-122 [11] Gao H Y, Qiao J J, Chu Y M. Local regularity and local boundedness results for very weak solutions to obstacle problems. J Inequal Appl, 2010, DOI:10.1155/2010/878769 |