[1] Aw A, Rascle M. Resurrection of "second order" models of traffic flow. SIAM J Appl Math, 2000, 60:916-938 [2] Bedran M L, Soares V, Aráujo M E. Temperature evolution of the FRW universe filled with modified Chaplygin gas. Phys Lett B, 2008, 659:462-465 [3] Bilic N, Tupper G B, Viollier R. Dark matter, dark energy and the Chaplygin gas. 2002, arXiv:astroph/0207423 [4] Chaplygin S. On gas jets. Sci Mem Moscow Univ Math Phys, 1904, 21:1-121 [5] Chen G Q, Liu H. Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM J Math Anal, 2003, 34:925-938 [6] Chen G Q, Liu H. Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids. Physica D, 2004, 189:141-165 [7] Cheng H J. Delta shock waves for a linearly degenerate hyperbolic system of conservation laws of KeyfitzKranzer type. Advances in Mathematical Physics, 2013, Article ID:958120 [8] Danilov V G, Shelkovich V M. Delta-shock waves type solution of hyperbolic systems of conservation laws. Quart Appl Math, 2005, 63:401-427 [9] Gorini V, Kamenshchik A, Moschella U, Pasquier V. The Chaplygin gas as a model for dark energy. 2004, arXiv:gr-qc/0403062 [10] Guo L H, Zhang Y, Yin G. Interactions of delta shock waves for the Chaplygin gas equations with spilt delta functions. J Math Anal Appl, 2014, 410:190-201 [11] Guo L H, Zhang Y, Yin G. Interactions of delta shock waves for the relativistic Chaplygin Euler equations with split delta functions. Math Meth Appl Sci, 2015, 38:2131-2148 [12] 黄梅香. 几类非线性双曲守恒律方程组的Riemann问题[D]. 福州:福州大学, 2016 Huang M X. Riemann Problems of Several Classes of Nonlinear Hyperbolic Conservation Laws Equations[D]. Fuzhou:Fuzhou University, 2016 [13] Keyfitz B L, Kranzer H C. A system of nonstrictly hyperbolic conservation laws arising in elasticity theory. Arch Rational Mech Anal, 1980, 72:219-241 [14] Korchinski D J. Solutions of a Riemann Problem for 2×a System of Conservation Laws Possessing no Classical Weak Solution[D]. New York:Adelphi University, 1977 [15] Li J Q. Note on the compressible Euler equations with zero temperature. Appl Math Lett, 2001, 14:519-523 [16] Lu Y. Existence of global bounded weak solutions to nonsymmetric systems of Keyfitz-Kranzer type. J Funct Anal, 2011, 261:2792-2815 [17] Nedeljkov M. Singular shock waves in interactions. Quart Appl Math, 2008, 66:281-302 [18] Nedeljkov M. Delta and singular delta locus for one dimensional systems of conservation laws. Math Methods Appl Sci, 2004, 27:931-955 [19] Nedeljkov M, Oberguggenberger M. Interactions of delta shock waves in a strictly hyperbolic system of conservation laws. J Math Anal Appl, 2008, 344:1143-1157 [20] Setare M R. Holographic Chaplygin gas model. Phys Lett B, 2007, 648:329-332 [21] Shao Z Q, Huang M X. Interactions of delta shock waves for the Aw-Rascle traffic model with split delta functions. J Appl Anal Comput, 2017, 7:119-133 [22] Shelkovich V M. δ-and δ'-shock wave types of singular solutions of systems of conservation laws and transport and concentration processes. Russian Math Surveys, 2008, 63:473-546 [23] Shen C, Sun M. Interactions of delta shock waves for the transport equations with split delta functions. J Math Anal Appl, 2009, 351:747-755 [24] Shen C, Sun M. Stability of the Riemann solutions for a nonstrictly hyperbolic system of conservation laws. Nonlinear Anal TMA, 2010, 73:3284-3294 [25] Shen C, Sun M. Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model. J Differential Equations, 2010, 249:3024-3051 [26] Sheng W C, Zhang T. The Riemann Problem for the Transportation Equations in Gas Dynamics. Providence, RI:Amer Math Soc, 1999 [27] Tan D, Zhang T, Zheng Y. Delta shock waves as limits of vanishing viscosity for hyperbolic system of conservation laws. J Differential Equations, 1994, 112:1-32 [28] Tsien H S. Two dimensional subsonic flow of compressible fluids. J Aeron Sci, 1939, 6:393-407 |