数学物理学报 ›› 2017, Vol. 37 ›› Issue (3): 562-576.

• 论文 • 上一篇    下一篇

矩阵不等式约束下矩阵方程最小二乘问题的增广Lagrangian方法

李姣芬1, 宋丹丹1, 周学林2, 邢雨蒙1   

  1. 1. 桂林电子科技大学数学与计算科学学院, 广西高校数据分析与计算重点实验室 广西 桂林 541004;
    2. 桂林电子科技大学教务处 广西 桂林 541004
  • 收稿日期:2016-09-12 修回日期:2017-01-17 出版日期:2017-06-26 发布日期:2017-06-26
  • 通讯作者: 李姣芬,E-mail:lijiaofen603@guet.edu.cn E-mail:lijiaofen603@guet.edu.cn
  • 基金资助:

    国家自然科学基金(11301107,11261014,11561015)和广西自然科学基金(2016GXNSFAA380074,2016GXNSFFA380009)

Augmented Lagrangian Method for Matrix Equation Least-squares Problem Under a Matrix Inequality Constraint

Li Jiaofen1, Song Dandan1, Zhou Xuelin2, Xing Yumeng1   

  1. 1. School of Mathematics and Computational Science, Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology, Guangxi Guilin 541004;
    2 Academic Affairs Office, Guilin University of Electronic Technology, Guangxi Guilin 541004
  • Received:2016-09-12 Revised:2017-01-17 Online:2017-06-26 Published:2017-06-26
  • Supported by:

    Supported by the NSFC (11301107, 11261014, 11561015) and the Natural Science Foundation of Guangxi Province (2016GXNSFAA380074, 2016GXNSFFA380009)

摘要:

X∈Rm×n为实(R,S)对称矩阵,若满足X=RXS,其中R∈Rm×mS∈Rn×n为非平凡实对合矩阵,即R=R-1≠±ImS=S-1≠±In.该文将优化理论中求凸集上光滑函数最小值的增广Lagrangian方法应用于求解矩阵不等式约束下实(R,S)对称矩阵最小二乘问题,即给定正整数m,n,p,t,q和矩阵Ai∈Rm×mBi∈Rn×n(i=1,2,…,q),C∈Rm×nE∈Rp×mF∈Rn×tD∈Rp×t,求实(R,S)对称矩阵X∈Rm×n且在满足相容矩阵不等式EXFD约束下极小化||AiXBi-C||,其中EXFD表示矩阵EXF-D非负,||·||为Frobenius范数.该文给出求解问题的矩阵形式增广Lagrangian方法的迭代格式,并用数值算例验证该方法是可行且高效的.

关键词: 矩阵不等式, 最小二乘问题, 实(R,S)对称矩阵, 增广Lagrangian方法

Abstract:

We say that a matrix X∈Rm×n is real (R, S) symmetric matrix if X=RXS, where R∈Rm×m and S∈Rn×n are real nontrivial involutions; thus R=R-1≠±Im, S=S-1≠±In. In this paper we apply the augmented Lagrangian method, for minimizing general smooth functions on convex sets in optimization theory, to solve the (R, S) symmetric matrix least squares problem under a linear inequality constraint. That is, given positive integers m, n, p, t, q, matrices Ai∈Rm×m, Bi∈Rn×n (i=1,2,…,q), C∈Rm×n, E∈Rp×m, F∈Rn×t and D∈Rp×t, find a (R, S) symmetric matrix X∈Rm×n that minimize||AiXBi-C||under matrix inequality constraint EXFD, where EXF-D means that matrix EXF -D nonnegative. We present matrix-form iterative format basing on the augmented Lagrangian method to solve the proposed problem and give some numerical examples to show that the iterative method is feasible and effective.

Key words: Matrix inequality, Least-squares problem, (R,S) Symmetric matrix, Augmented Lagrangian method

中图分类号: 

  • O241.2