[1] 范猛, 王克.具有遗传效应单种群模型的正周期解. 应用数学, 2000, 13(2):58-61 Fan M, Wang K. Periodic solutions of single population model with hereditary effects. Mathematica Applicata (Chinese Series), 2000, 13(2):58-61 [2] 崔景安.时滞Lotka-Volterra系统的持久性和周期解. 数学学报, 2000, 47(3):511-519 Cui J A. Permanence and periodic solution of Lotka-Volterra system with time delay. Acta Mathematica Sinica (Chinese Series), 2004, 47(3):511-519 [3] Liu Z J. Effect of toxicants on a two-species competitve system with multi-delays. Mathematics Applicata, 2001, 14(Supplement):121-125 [4] Chen F D, Shi J L. Periodicity in a logistic type system with several delays. Computers and Mathematics with Applications, 2004, 48:35-44 [5] Chen F D, Shi J L, Chen X X. Periodicity in a Lotka-Volterra facultative mutualism system with several delays. Chinese Journal of Engineering Mathematics, 2004, 21(3):377-380 [6] 程荣福,常亮. 具无限时滞和非单调功能性反应的捕食系统的多周期解. 吉林大学学报(理学版), 2010, 48(5):761-765 Cheng R F, Chang L. Multiple periodic solution of a predator-prey system with infinite delay and nonmonotonic functional response. Journal of Jilin University (Science Edition, Chinese Series), 2010, 48(5):761-765 [7] Wei F Y, Wang S H. Positive periodic solutions of nonautonomous competitive systems with infinite delay and diffusion. Journal of Biomathematics, 2012, 27(2):193-202 [8] Gopalsamy K, Weng P X. Feedback regulation of Logistic growth. Internat Math and Math Sci, 1993,16:177-192 [9] 丁孝全, 程述汉. 具反馈控制的时滞阶段结构种群模型的稳定性. 生物数学学报, 2006, 21(2):225-232 Ding X Q, Cheng S H. The stability of a delayed stage-structured population growth model with feedback controls. Journal of Biomathematics (Chinese Series), 2006, 21(2):225-232 [10] 房辉,王志成.具投放的中立型时滞竞争扩散系统正周期解的存在性. 数学物理学报, 2008, 28(4):719-730 Fang H, Wang Z C. Existence of positive periodic solutions of a neutral delay competition model with diffusion and stock. Acta Mathematica Scientia, 2008, 28(4):719-730 [11] 赵明, 程荣福. 一类具生物控制和比率型功能反应的食物链系统周期解的存在性. 吉林大学学报(理学版), 2009, 47(4):730-736 Zhao M, Cheng R F. Existence of periodic solution of a food chain system with biocontrol and ratio functional response. Journal of Jilin University (Science Edition, Chinese Series), 2009, 47(4):730-736 [12] 秦发金.一类具有收获率和扩散的时滞阶段结构捕食系统的多重正周期解.数学物理学报, 2009, 29(6):1613-1622 Qin F J. Multiple periodic solutions for a delayed stage-structure predator-prey systems with harvesting rate and diffusion. Acta Mathematica Scientia, 2009, 29(6):1613-1622 [13] 何继伟. 具有无穷时滞和反馈控制的Lotka-Volterra捕食系统的生存分析. 北华大学学报(自然科学版), 2010, 11(4):293-296 He J W. Survival analysis of Lotka-Volterra prey system with infinite delays and feedback controls. Journal of Beihua University (Natural Science, Chinese Series), 2010, 11(4):293-296 [14] 程荣福. 具有脉冲的非自治多种群Lotka-Volterra竞争系统的周期性. 北华大学学报(自然科学版), 2012, 13(1):1-8 Cheng R F. Periodicity of a nonautonomous multi-species Lotka-Volterra competitive system with impulse. Journal of Beihua University (Natural Science, Chinese Series), 2012, 13(1):1-8 [15] 叶辉,蔡东汉.周期性果蝇模型解的整体稳定性. 数学物理学报, 2013, 33(6):1013-1021 Ye H, Cai D H. Global attractivity in a periodic nicholsons blowflies model. Acta Mathematica Scientia (Chinese Series), 2013, 33(6):1013-1021 [16] Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations. Berlin:SpringerVerlag, 1977:40-45 [17] 王静, 王克. 非自治一捕食者-两互惠食饵模型的动力学行为. 东北师大学报(自然科学版), 2005, 37(4):1-6 Wang J, Wang K. Dynamics of one predaton-two cooperative prey model. Journal of Northeast Normal University (Chinese Series), 2005, 37(4):1-6 [18] Barbalat I. System dequation differentilles dosecilltion nonlinears. Rev Math Pure et Appl, 1959, 4:267-270 |