[1] Duren P. Harmonic Mappings in the Plane. New York:Cambridge University Press, 2004
[2] Ponnusamy S, Rasila A, Sairam Kaliraj A. Harmonic close-to-convex functions and minimal surfaces. Complex Var Elliptic Equ, 2013, 59(7):1-17
[3] Clunie J, Sheil-Small T. Harmonic univalent functions. Ann Acad Sci Fenn Math, 1984, 9:3-26
[4] Chen H H. Some new results on planar harmonic mappings. Sci China, 2010, 53}(3):597-604
[5] Kalaj D. Quasiconformal harmonic mappings and close-to-convex domains. Filomat, 2010, 24}(1):63-68
[6] Liu M S, Liu Z X. Landau-type theorems for p-harmonic mappings or log-p-harmonic mappings. Appl Anal, 2014, 93(11):2462-2477
[7] Ponnusamy S, Yamamoto H, Yanagihara H. Variability regions for certain families of harmonic univalent mappings. Complex Var Elliptic Equ, 2013, 58(1):23-34
[8] Li L, Ponnusamy S. Injectivity of sections of univalent harmonic mappings. Nonlinear Anal, 2013, 89:276-283
[9] Li L, Ponnusamy S. Disk of convexity of sections of univalent harmonic functions. J Math Anal Appl, 2013, 408}(2):589-596
[10] MacGregor T H. Functions whose derivative has a positive real part. Trans Amer Math Soc, 1962, 104:532-537
[11] Ahlfors L V. Lectures on Quasiconformal Mappings. American:American Mathematical Society, 1966
[12] Lehto O, Virtanen K I. Quasiconformal Mappings in the Plane. London:Springer-Verlag, 1973
[13] Hamada H, Honda T, Shon K H. Quasiconformal extensions of starlike harmonic mappings in the unit disc. Bull Korean Math Soc, 2013, 50(4):1377-1387
[14] Hernandez R, Martín M J. Stable geometric properties of analytic and harmonic functions. Math Proc Cambridge Philos Soc, 2013, 155(2):343-359
[15] Hernandez R, Martín M J. Pre-Schwarzian and Schwarzian derivatives of harmonic mappings. J Geom Anal, 2015, 25(1):64-91
[16] Chuaqui M, Duren P, Osgood B. The Schwarzian derivative for harmonic mappings. J Anal Math, 2003, 91(1):329-351
[17] Chuaqui M, Hernández R, Martín M J. Affine and linear invariant families of harmonic mappings. 2014, arXiv:1405.5106
[18] Pommerenke C. Linear-invariante familien analytischer funktionen I. Math Ann, 1964, 155:108-154
[19] Yamashita S. Gelfer functions, integral means, bounded mean oscillation, and univalency. Trans Amer Math Soc, 1990, 321}(1):245-259 |