[1] Bleher P, Lyubich M. Julia sets and complex singularities in hierarchical Ising models. Commun Math Phys, 1991, 141:453-474
[2] Bleher P, Lyubich M, Roeder R. Lee-Yang-Fisher zeros for DHL and 2d rational dynamics I:Foliation of the physical cylinder. 2010, arxiv:1009.4691v1
[3] Bleher P, Lyubich M. Julia sets and complex singularities in hierarchical Ising models. Comm Math Phys, 1991, 141:453-474
[4] Derrida B, Itzykson C, Luck J K. Oscillatory critical amplitudes in hierarchical models. Comm Math Phys, 1984, 94:115-132
[5] Derrida B, De Seze L. Fractal structure of zeros in hierarchical models. J Stat Phys, 1983, 33:559-569
[6] Falconer K. Fractal Geometry:Mathematical Foundations and Applications (Second Edition). England:John Wiley Sons, 2003
[7] Lee T D, Yang C N. Statistical theory of equations of state and phase transitions II:Lattice gas and Ising model. Phys Rev, 1952, 87:410-419
[8] Mane R, Sad P, Sullivan D. On the dynamics of rational maps. Ann Sci Ecole Norm Sup, 1983, 16(4):193-217
[9] McMullen C T. Complex Dynamics and Renormalization. Princeton:Princeton Univ Press, 1994
[10] McMullen C T. Hausdorff dimension and conformal dynamics II:Geometrically finite rational maps. Comment Math Helv, 2000, 75:535-593
[11] Milnor J. Dynamics in One Complex Variable. Vieweg Wiesbaden:Braunschweig, 1999
[12] Peitgen H O, Richter P H. The Beauty of Fractals (Images of Complex Dynamical Systems). Berlin:Springer-Verlag, 1986
[13] Qiao J. On Julia sets concerning phase transitions. Sci China, 2003, 46(3):415-431
[14] Qiao J. Complex Dynamics on Renormalization Transformations (in Chinese). Beijing:Science Press, 2010
[15] Ruelle D. Repellers for real analytic maps. Ergod Th Dynam Sys, 1982, 2:99-107
[16] Yang C N, Lee T D. Statistical theory of equations of state and phase transitions I:Theory of condensation. Phys Rev, 1952, 87:404-409
[17] Yang F, Zeng J S. On the dynamics of a family of generated renoralization transformations. Journal of Mathematical Analysis and Applications, 2014, 413:361-377
[18] Whyburn G T. Topological characterization of the Siepinski curve. Fund Math, 1958, 45:320-324 |