数学物理学报 ›› 2016, Vol. 36 ›› Issue (6): 1027-1039.

• 论文 • 上一篇    下一篇

伪黎曼乘积空间中具有平行平均曲率向量的曲面

邱望华1, 侯中华2   

  1. 1. 九江学院理学院 江西九江 332005;
    2. 大连理工大学数学科学学院 辽宁大连 116024
  • 收稿日期:2016-02-24 修回日期:2016-07-31 出版日期:2016-12-26 发布日期:2016-12-26
  • 通讯作者: 侯中华 E-mail:zhhou@dlut.edu.cn
  • 基金资助:

    国家自然科学基金(61473059)资助

Surfaces in Products of Semi-Riemannian Space Forms with Parallel Mean Curvature Vector

Qiu Wanghua1, Hou Zhonghua2   

  1. 1. College of Sciences, Jiujiang University, Jiangxi Jiujiang 332005;
    2. Institute of Mathematics, Dalian University of Technology, Liaoning Dalian 116024
  • Received:2016-02-24 Revised:2016-07-31 Online:2016-12-26 Published:2016-12-26
  • Supported by:

    Supported by the NSFC (61473059)

摘要:

Batista在M2c)×R中的具有常平均曲率的曲面上引入了一个特殊的(1,1)型张量S.之后,Fetcu和Rosebberg将张量S推广到Mnc)×R中的具有平行平均曲率向量的曲面上.该文将张量S推广到了伪黎曼乘积空间中的曲面上,并研究了S的Pinching问题,得到了若干Pinching常数.特别地,对外围空间是黎曼乘积空间的情况,得到的Pinching常数优于Batista得到的相应的Pinching常数.

关键词: 平行平均曲率向量, 乘积空间, Simons型方程, Pinching常数

Abstract:

Batista introduced a special (1,1) tensor S on a CMC immersed surface Σ2 in M2(c)×R. Later on, Fetcu and Rosebberg extended (1,1) tensor S to PMC surface Σ2Mn-1(c)×R. In the present paper, the authors consider a more general tensor S on PMC immersed surface Σ2 in Lorentzian product spaces (Mn-1(c)×R, g-1) and Riemmannian product spaces (Mn-1(c)×R, g+1). The authors compute the Simons type equations of |S|2, and characterize CMC surfaces in (M2(c)×R, gε). For case ε=+1, we obtain several pinching constants greater than that given by Batista.

Key words: Parallel mean curvature vector, Simons type equation, Product spaces, Pinching constants

中图分类号: 

  • O186.12