数学物理学报 ›› 2016, Vol. 36 ›› Issue (4): 672-680.

• 论文 • 上一篇    下一篇

一类大初值抛物方程组解的生命周期

肖峰   

  1. 武汉大学数学与统计学院 武汉 430072
  • 收稿日期:2015-11-09 修回日期:2016-04-17 出版日期:2016-08-26 发布日期:2016-08-26
  • 作者简介:肖峰,xfbelieve@163.com
  • 基金资助:

    中央高校自主科研经费

Life Span of Solutions for a Class of Parabolic System with Large Initial Data

Xiao Feng   

  1. School of Mathematics and Statistic, Wuhan University, Wuhan 430072
  • Received:2015-11-09 Revised:2016-04-17 Online:2016-08-26 Published:2016-08-26
  • Supported by:

    Supported by the Fundamental Research Funds for the Central Universities

摘要:

该文考虑如下初边值问题解的生命周期
utu=eav,(x,t)∈Ω×(0,T),
vtv=ebu,(x,t)∈Ω×(0,T),ux,t)=vx,t)=0,(x,t)∈∂Ω×(0,T),
ux,t)=ρφx),vx,t)=ρψx),(x,t)∈Ω×{t=0},
其中a>0,b>0是常数,Ω是RN中带光滑边界∂Ω的有界区域,ρ>0是参数,φx)和 ψx)都是Ω上的非负连续函数. 首先,基于一个新的常微分方程组的分析,该文构造了以上初边值问题的一个上解,并由此得到了解的生命周期的渐近下界. 然后,利用比较原理和Kaplan的方法[3],可以证明这个下界也是渐近上界,因此该文就得到了上述初边值问题解的生命周期的渐近表达式.

关键词: 耦合抛物方程组, 生命周期, 比较原理, Kaplan方法

Abstract:

We are concerned with the life span of solutions of the initial-boundary value problem 
utu=eav,(x,t)∈Ω×(0,T),
vtv=ebu,(x,t)∈Ω×(0,T),u(x,t)=v(x,t)=0,(x,t)∈∂Ω×(0,T),
u(x,t)=ρφ(x),v(x,t)=ρψ(x),(x,t)∈Ω×{t=0},
Here a>0, b>0 are constants, Ω is a bounded domain in RN with smooth boundary ∂Ω, ρ>0 is a parameter, and φ(x) and ψ(x) are nonnegative continuous functions on Ω. To this end, we first deduce a asymptotic lower bound on its life span by constructing a upper solution of the above initial-boundary value problem which is based on the analysis of a new ODE system, then by the comparison principle and Kaplan's method[3], we can further show that such a lower bound is indeed a asymptotic upper bound and thus we obtain the asymptotic expression of the life span of the solutions for the problem concerned.

Key words: Coupled parabolic system, Life span, Comparison principle, Kaplan's method

中图分类号: 

  • O175.4