[1] Brenier Y. Solutions with concentration to the Riemann problem for the one-dimensional Chaplygin gas equations. J Math Fluid Mech, 2005, 7: S326-S331
[2] Chaplygin S. On gas jets. Sci Mem Moscow Univ Math Phys, 1904, 21: 1-121
[3] Chen S, Qu A F. Riemann boundary value problems and reflection of shock for the Chaplygin gas. Sci China Math, 2012, 55: 671-685
[4] Chen S X, Qu A F. Two-dimensional Riemann problems for the Chaplygin gas. SIAM J Math Anal, 2012, 44: 2146-2178
[5] Godin P. Global existence of a class of smooth 3D spherically symmetric flows of Chaplygin gases with variable entropy. J Math Pure Appl, 2007, 87: 91-117
[6] Gorini V, Kamenshchik A, Moschella U, Pasquier V. The Chaplygin gas as a model for dark energy. arXiv:gr-qc/0403062v2
[7] Huang S J, Wang R. On blowup phenomena of solutions to the Euler equations for Chaplygin gases. Applied Mathematics and Computation, 2013, 219: 4365-4370
[8] Kong D X. A necessary and sufficient condition for the diagonalization of mutlti-dimensional quasilinear systems. Electronic J Diff Equa, 1999, 1999: 1-14
[9] Kong D X, Wei C H. Formation and propagation of singularities in one-dimensional Chaplygin gases. J Geometry and Physics, 2014, 80: 58-70
[10] Kong D X, Wei C H, Zhang Q. Formation of singularities in one-dimensional Chaplygin gas. J Hyper Differential Equations, 2014, 11: 521-561
[11] Kong D X, Liu Kefeng, Wang Y Z. Global existence of smooth solutions to two-dimensional compressible isentropic Euler equations for Chaplygin gases. Sci China Math, 2010, 53: 719-738
[12] Kong D X, Tsuji M. Global solutions for 2×2 hyperbolic systems with linearly degenerate characteristics. Funkcialaj Ekvacioj, 1999, 42: 129-155
[13] Kong D X, Zhang Q. Solutions formula and time-periodicity for the motion of relativistic strings in the minkowski space R1+n. Physica D, 2009, 238: 902-922
[14] Kong D X, Zhang Q, Zhou Q. The dynamics of relativistic strings moving in the Minkowski space R1+n. Comm Math Phys, 2007, 269: 153-174
[15] Lax P D. Hyperbolic systems of conservation laws II. Comm Pure Appl Math, 1957, 10: 537-566
[16] Serre D. Multidimensional shock interaction for a Chaplygin gas. Arch Rational Mech Anal, 2009, 191: 539-577
[17] Tsien H S. Two dimensional subsonic flow of compressible fluids. J Aeron Sci, 1939, 6: 399-407
[18] von Karman T. Compressibility effects in aerodynamics. J Aeron Sci, 1941, 8: 337-356 |