[1] Watson G N. A Treatise on the Theory of Bessel Functions. London:Cambridge University Press, 1995
[2] Aronzajn N, Smith K T. Theory of Bessel potentials, part I. Ann de L'Inst Fourier, 1961, 11:385-475
[3] Brawn F T. Positive harmonic majorization of subharmonic functions in strips. Proc London Math Soc, 1973, 27:261-289
[4] Armitage D H, Fugard T B. Subharmonic functions in strips. J Math Anal Appl, 1982, 89:1-27
[5] Aikawa H. On subharmonic functions in strips. Ann Acad Sci Fenn, 1987, 1:119-134
[6] Qiao L, Deng G T. The Dirichlet problem in a generalized strip (in Chinese). Scientia Sinica Mathematica, 2013, 43(8):781-792
[7] Rosenblum G, Solomyak M, Shubin M. Spectral Theory of Differential Operators. Moscow:VINITI, 1989
[8] Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. London:Springer-Verlag, 1977
[9] 邓冠铁, 复分析. 21世纪高等学校研究生教材. 北京:北京师范大学出版社, 2010Deng G T. Complex Analysis (in Chinese). Gractuate Textbooks of Institution of Higher Learning on Twenty-first Century. Beijing:Beijing Norinal University Press, 2010
[10] Brawn F T. Mean value and Phragmén-Lindelöf theorems for subharmonic functions in strips. Proc London Math Soc, 1971, 4:689-698
[11] Mizuta Y. Potential Theory in Euclidean Spaces. Tokyo:Gakkötosho, 1996
[12] Hörmander L. Notions of Convexity. Berlin:Birkhäuser, 1994
[13] Qiao L, Deng G T. A theorem of Phragmén-Lindelöf type for subfunctions in a cone. Glasg Math J, 2011, 53:599-610
[14] Qiao L, Pan G S. Generalization of the Phragmén-Lindelöf theorems for subfunctions. Int J Math, 2013, 24(8):1350062
[15] Qiao L, Deng G T. A lower bound of harmonic functions in a cone and its application (in Chinese). Scientia Sinica Mathematica, 2014, 44(6):671-684
[16] Qiao L, Deng G T. Minimally thin sets at infinity with respect to the Schrödinger operator (in Chinese). Scientia Sinica Mathematica, 2014, 44(12):1247-1256 |