数学物理学报 ›› 2015, Vol. 35 ›› Issue (5): 845-854.

• 论文 • 上一篇    下一篇

一类带有Neumann边值条件的拟线性椭圆外部问题的多解性

宋洪雪1,2, 闫庆伦1   

  1. 1 南京邮电大学理学院 南京 210023;
    2 河海大学理学院 南京 210098
  • 收稿日期:2014-05-19 修回日期:2015-03-04 出版日期:2015-10-25 发布日期:2015-10-25
  • 作者简介:宋洪雪,songhx@njupt.edu.cn
  • 基金资助:

    国家自然科学基金(11201241,11401165,11201240)和江苏省高校"青蓝工程"项目(QL2014)资助

Multiple Solutions for Quasilinear Elliptic Exterior Problem with Neumann Boundary Conditions

Song Hongxue1,2, Yan Qinglun1   

  1. 1 College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023;
    2 College of Science, Hohai University, Nanjing 210098
  • Received:2014-05-19 Revised:2015-03-04 Online:2015-10-25 Published:2015-10-25

摘要:

该文考虑下面的带有Neumann边值条件的拟线性椭圆外部问题

Ω,其中1< p< N, 1< q< p< r< p*, p*=Np/(N-p), Ω是欧几里德空间(RN,|·|)(N ≥ 3)中的光滑外部区域,也就是说, Ω是某个带有C1,δ(0< δ< 1)边界的有界区域Ω'的补集, n是其边界∂Ω的单位外法向量, λ是一个正参数.由山路引理和Ekeland变分原理,我们得出:当函数a(x), b(x), h1(x), h2(x)和g(x)满足一定的条件时,该方程至少有两个非平凡弱解.

关键词: 山路引理, 变分法, Neumann边值条件

Abstract:

In this paper, we consider the following quasi-linear elliptic exterior problem with Neumann boundary value conditions 

where Ω is a smooth exterior domain of the Euclidean space(RN,|·|)(N ≥ 3), and n is the unit vector of the outward normal on the boundary ∂Ω. λ is a positive parameter, 1< p< N, 1< q< p< r< p*, p*=Np/(N-p). By the mountain-pass theorem and Ekeland's variational principle, we establish the existence of two solutions for this problem when functions a(x), b(x), h1(x), h2(x) and g(x) satisfy certain conditions.

Key words: Mountain-pass Theorem, Variational methods, Neumann boundary conditions

中图分类号: 

  • O175.23