[1] Bartsch T, Ding Y. On a nonlinear Schrödinger equation with periodic potential. Math Ann, 1999, 313: 15-37
[2] Chabrowski J, Szulkin A. On a semilinear Schrödinger equation with critical Sobolev exponent. Proceedings of the American Mathematical Society, 2001, 130: 85-93
[3] Chabrowski J, Yang J F. Existence theorems for the Schrödinger equation involving a critical Sobolev exponent. Z Angew Math Phys, 1998, 49: 276-293
[4] Chabrowski J, Yang J F. On Schrödinger equation with periodic potential and critical Sobolev exponent. Topological Methods in Nonlinear Analysis, 1998, 12: 245-261
[5] Jeanjean L. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on RN. Proc Roy Soc Edinburgh, 1999, 129: 787-809
[6] Kryszewski W, Szulkin A. Generalized linking theorem with an application to a semilinear Schrödinger equation. Adv Differential Equations, 1998, 3: 441-472
[7] Li Y Q, Wang Z Q, Zeng J. Ground states of nonlinear Schrödinger equations with potentials. Ann Inst H PoincaréAnal Non Linéaire, 2006, 23(6): 829-837
[8] Pankov A. Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J Math, 2005, 73: 259-287
[9] Rabinowitz P. Minimax Methods in Critical Point Theory with Applications to Differential Equation. CBMS Series, Vol 65. Providence RI: Amer Math Soc, 1986
[10] Schechter M, Zou W. Weak linking theorems and Schrödinger equations with critical Sobolev exponent. ESAIM: Control, Optimisation and Calculus of Variations, 2003, 9: 601-619
[11] Szulkin A, Weth T. Ground state solutions for some indefinite problems. J Funct Anal, 2009, 12: 3802-3822
[12] Szulkin A, Weth T, Willemy M. Ground state solutions for a semilinear problem with critical exponent. Differential Integral Equations, 2009, 22: 913-926
[13] Szulkin A, Zou W. Homoclinic orbits for asymptotically linear Hamiltonian systems. J Funct Anal, 2001, 187: 25-41
[14] Wang F Z, Huang Y S. On a semi-linear Schrödinger equation in RN. Nonlinear Analysis, 2005, 62: 833-848
[15] Willem M. Minimax Theorems. Boston: Birkhäuser, 1996
[16] Yang M B. Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities. Nonlinear Analysis, 2010, 72: 2620-2627 |