[1] Rú?i?ka M. Electrorheological Fluids: Modeling and Mathematical Theory. Lect Notes Math, Vol 1748. Berlin: Springer, 2000
[2] Rajagopal K R, Rú?i?ka M. Mathematical modeling of electrorheological materials. Contin Mech Thermodyn, 2001, 13: 59-78
[3] Rú?i?ka M. Flow of shear dependent electrorheological fluids. C R Acad Sci Paris (I Math), 1999, 329: 393-398
[4] Zhikov V V. Averaging of functionals of the calculus of variations and elasticity theory (Russian). Izv Akad Nauk SSSR Ser Mat, 1986, 50(4): 675-710
[5] Levine S, Stanich J, Chen Y. Image restoration via nonstandard diffusion[D]. Duquesne, USA: Duquesne University, 2004
[6] Cruz-Uribe D, Fiorenza A, Neugebauer C J. The maximal function on variable Lp spaces. Ann Acad Sci Fenn (A I Math), 2003, 28: 223-238
[7] Edmunds D, Rakosnik J. Sobolev embeddings with variable exponent. Stud Math, 2000, 143: 267-293
[8] Harjulehto P, HästöP, Martio O. Fuglede's theorem in variable exponent Sobolev space. Collect Math, 2004, 55(3): 315-324
[9] Fan Xianling, Zhao Dun. On the spaces Lp(x)(Ω) and WLm,p(x)(Ω). J Math Anal Appl, 2001, 263: 424-446
[10] Harjulehto P. Variable exponent Sobolev spaces with zero boundary values. Math Bohem, 2007, 132: 125-136
[11] Diening L, Rú?i?ka M. Calderón-Zygmund operators on generalized Lebesgue spaces Lp(·) and problems related to fluid dynamics. J Reine Angew Math, 2003, 563: 197-220
[12] Emilio Acerbi, Giuseppe Mingione. Gradient estimates for the p(x)-Laplacean system. J Reine Angew Math, 2005, 584: 117-148
[13] Verena Bögelein, Anna Zatorska-Goldstein. Higher integrablity of very weak solutions of systems of p(x)-Laplacean type. J Math Anal Appl, 2007, 336: 480-497
[14] Yao Fengping, Sun Yu, Zhou Shulin. Gradient estimates in Orlicz spaces for quasilinear elliptic equation. Nonlinear Analysis, 2008, 69: 2553-2565
[15] Emilio Acerbi, Giuseppe Mingione. Gradient estimates for a class of parabolic systems. Duke Math J, 2007, 136: 285-320
[16] Byun S, Wang L, Zhou S. Nonlinear elliptic equations with BMO coefficients in Reifenberg domains. J Funct Anal, 2007, 250(1): 167-196
[17] Kinnunen J, Zhou S. A local estimate for nonlinear equations with discontinuous coefficients. Comm Partial Differential Equations, 1999, 24: 2043-2068
[18] Palagachev D. A Quasilinear elliptic equations with VMO coefficients. Trans Amer Math Soc, 1995, 347: 2481-2493
[19] Wang L. Compactness methods for certain degenerate elliptic equations. J Differential Equations, 1994, 107(2): 341-350
[20] Coscia A, Mingione G. Höder continuity of the gradient of p(x)-harmonic mappings. C R Acad Sci Paris Math, 1999, 328(4): 363-368
[21] Lyaghfouri A. Höder continuity of p(x)-superharmonic functions. Nonlinear Anal, 2010, 73(8): 2433-2444
[22] Zhang C, Zhou S. Höder regularity for the gradients of solutions of the strong p(x)-Laplacian. J Math Anal Appl, 2012, 389(2): 1066-1077
[23] Yao Fengping. Local Hölder regularity of the gradients for the elliptic Laplacian equation. Nonlinear Analysis, 2013, 78: 79-85
[24] Lieberman G M. The natural generalization of the natural conditions of ladyzhenskaya and Ural'tseva for elliptic equations. Commun in PDE, 1991, 16(23): 311-361
[25] Heinonen J, Kilpelanen T, Martio O. Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford, New York, Tokyo: Clarendon Press, 1993
[26] Acerbi E, Mingione G. Regularity results for a class of functionals with nonstandard growth. Arch Ration Mech Anal, 2001, 156: 121-140 |