[1] Sattinger D H. On global solution of nonlinear hyperbolic equations. Arch Rat Mech Anal, 1968, 30: 148-172
[2] Payne L E, Sattinger D H. Saddle points and instability on nonlinear hyperbolic equations. Israel Math J, 1975, 22: 273-303
[3] Liu Y C. On potential wells and vaccum isolating of solutions for semilinear wave equation. J Differ Equ, 2003, 1992: 155-169
[4] Liu Y C. On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Anal, 2006, 64: 2665-2678
[5] Xu R Z. Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data. Quart Appl Math, 2010, 68: 459-468
[6] Georgiev V, Todorova G. Existence of a solution of the wave equation with nonlinear damping and source terms. J Differ Equ, 1994, 109: 295-308
[7] Ikehata R. Some remarks on the wave equations with nonlinear damping and source terms. Nonlinear Anal T M A, 1996, 27: 1165-1175
[8] Messaoudi S A. Blow up in a nonlinear damped wave equation. Math Nachr, 2005, 231: 105-111
[9] Messaoudi S A. Global nonexistence in a nonlinearly damped wave equation. Applicable Anal, 2001, 80: 269-277
[10] Messaoudi S A. Exponential dacay of solutions of a nonlinearly damped wave equation. Nonlinear Differ Equ Appl, 2005, 12: 391-399
[11] Hayes M, Saccomandi G. Finite amplitude transverse waves in special incompressible viscoelastic solids. J Elasticity, 2000, 59: 213-225
[12] Shang Y D. Initial-boundary value problem for a class of fourth order nonlinear evolution equations. Math Appl, 2000, 13(1): 7-11
[13] Shang Y D. Initial boundary value problem of equation utt-△u-△ut-△utt=f(u). Acta Math Appl Sin, 2000, 23: 385-393
[14] Zhang H W, Hu Q Y. Existence of global weak solution and stability of a class nonlinear evolution equation. Acta Math Sci, 2004, 24A: 329-336
[15] Xie Y Q, Zhong C K. The existence of global attractors for a class nonlinear evolution equation. J Math Anal Appl, 2007, 336: 54-69
[16] Xu R Z, Zhao X R, Shen J H. Asymptotic behavior of solution for fourth order wave equation with dispersive and dissipative terms. Appl Math Meth, 2008, 29: 259-262
[17] Xie Y Q, Zhong C K. Asymptotic behavior of a class of nonlinear evolution equations. Nonlinear Anal, 2009, 71(11): 5095-5105
[18] Carvalho A N, Cholewa J W. Local well posedness, asymptotic behavior and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time. Trans Amer Math Soc, 2009, 361(5): 2567-2586
[19] Sun C Y, Yang L, Duan J Q. Asymptotic behavior for a semilinear second order evolution equation. Trans Amer Math Soc, 2011, 363(11): 6085-6109
[20] Chen C S, Wang H, Zhu S L. Global attractor and decay estimates of solutions to a class of nonlinear evolution equations. Math Methods Appl Sci, 2011, 34(5): 497-508
[21] Villiaggio P. Mathematical Models for Elastic Structures. Cambridge: Cambridge University Press, 1997
[22] Xu R Z, Yang Y B. Finite time blow up for the nonlinear fourth-order dispersive-dissipative wave equation at high energy level. International J Mathematics, 2012, 23: 1250060, 10 pages
[23] Messaoudi S A. On the decay of solutions for a class of quasilinear hyperbolic equations with nonlinear damping and source terms. Math Meth Appl Sci, 2005, 28: 1819-1828
[24] Messaoudi S A. Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation. J Math Anal Appl, 2006, 320: 902-915
[25] Lasiecka I, Tataru D. Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differential Integral Equations, 1933, 6(3): 507-533
[26] Cavalcanti M M, Cavalcanti V N D, Martinez P. Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term. J Differential Equations, 2004 203(1) 119-158
[27] Lions J L. Quelques Méthodes de Résolution des Problémes anx Limites Non Linéaires. Paris: Dunod Gauthier-Villars, 1969
[28] Xu R Z, Yang Y B, Liu Y C. Global well-posedness for strongly damped viscoelastic wave equation. Appl Anal, 2013, 92: 138-157
[29] Xu R Z, Yang Y B. Global existence and asymptotic behaviour of solutions for a class of fourth order strongly damped nonlinear wave equations. Quart Appl Math, 2013, 71: 401-415 |