数学物理学报 ›› 2015, Vol. 35 ›› Issue (3): 634-640.

• 论文 • 上一篇    

一类新的变时滞中立型神经网络的全局渐近稳定性条件

罗日才1, 许弘雷2, 王五生3   

  1. 1. 河池学院计算机与信息工程学院 广西宜州 546300;
    2. Department of Mathematics and Statistics, Curtin University, Perth, WA 6845, Australia;
    3. 河池学院计数学与统计学院 广西宜州 546300
  • 收稿日期:2014-04-29 修回日期:2014-10-10 出版日期:2015-06-25 发布日期:2015-06-25
  • 作者简介:罗日才, luoricai@163.com;许弘雷, hongleix@gmail.com;王五生, wang4896@126.com
  • 基金资助:

    国家自然科学基金(11171079)和广西教育厅科研项目(201106LX591)资助

Globally Asymptotic Stability of A New Class of Neutral Neural Networks with Time-Varying Delays

Luo Ricai1, Xu Honglei2, Wang Wusheng3   

  1. 1. School of Computer and Information Engineering, Hechi University, Guangxi Yizhou 546300;
    2. Department of Mathematics and Statistics, Curtin University, Perth, WA 6845, Australia;
    3. School of Mathematics and Statistics, Hechi University, Guangxi Yizhou 546300
  • Received:2014-04-29 Revised:2014-10-10 Online:2015-06-25 Published:2015-06-25

摘要:

研究了一类激活函数的状态变量带有微分时滞的中立型神经网络的稳定性问题. 通过构造李亚普诺夫函数, 并利用LMI分析技巧, 获得了该类中立型神经网络的全局渐近稳定性的充分条件. 最后通过实际算例验证了所得结果的有效性.

关键词: 中立型神经网络, 变时滞, 全局渐近稳定性, 充分条件

Abstract:

In this paper, we study the stability problem of a class of neural neutral network systems whose involve an activation function with differential time-delay state variables. By constructing Lyapunov functions and using LMI techniques, we obtain a sufficient condition for the global asymptotic stability of these neural networks. Finally, we demonstrate the validity of our results by use of a numerical example.

Key words: Neutral neural networks, Varying time delays, Global asymptotic stability, Sufficient condition

中图分类号: 

  • O175