[1] Zaslavsky G M. Chaos, fractional kinetics and anomalous transport. Phys Rep, 2002, 371(6): 461-580
[2] Tarasov V E. Zaslavsky G M. Dynamics with low-level fractionality. Physica A, 2006, 368(2): 399-415
[3] Riewe F. Mechanics with fractional derivatives. Phys Rev E, 1997, 55(3): 3581-3592
[4] Tarasov V E. Fractional systems and fractional Bogoliubov hierarchy equations. Phys Rev E, 2005, 71(1): 011102
[5] Tarasov V E. Fractional Liouville and BBGKI equations. J Phys Conf Ser, 2005, 7: 17-33
[6] Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput Math Appl, 2006, 51(9/10): 1367-1376
[7] Jumarie G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. Appl Math Lett, 2009, 22(3): 378-385
[8] Tu G Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J Math Phys, 1989, 30(2): 330-338
[9] Wu G C, Zhang S. A generalized Tu formula and Hamiltonian structures of fractional AKNS hierarchy. Phys Lett A, 2011, 375(42): 3659-3663
[10] Yue C, Xia T C. The fractional quadratic-form identity and Hamiltonian structure of an integrable coupling of the fractional Ablowitz-Kaup-Segur hierarchy. J Math Phys, 2013, 54(7): 073518
[11] Wang H, Xia T C. The fractional supertrace identity and its application to the super Ablowitz-Kaup-Segur hierarchy. J Math Phys, 2013, 54(4): 043505
[12] Ma W X, He J S, Qin Z Y. Supertrace identity and its application to superintegrable systems. J Math Phys, 2008, 49(3): 033511, 13 pages
[13] Tao S X, Xia T C. Two super-integrable hierarchy and their super-Hamiltonian structures. Commun Nonlinear Sci Numer Simulat, 2011, 16(1): 127-132
|