[1] Rabinowitz P H. Homoclinic orbits for a class of Hamiltonian systems. Proc Roy Soc Edinburgh Sect A, 1990, 114(1/2): 33-38
[2] Rabinowitz P H, Tanaka K. Some results on connecting orbits for a class of Hamiltonian systems. Math Z, 1991, 206(3): 473-499
[3] Korman P, Lazer A C. Homoclinic orbits for a class of symmetric Hamiltonian systems. Electron J Differential Equations, 1994, 1: 1-10
[4] Fei G H. The existence of homoclinic orbits for Hamiltonian systems with the potentials changing sign. Chinese Ann Math (Ser B), 1996, 4: 403-410
[5] Felmer P L, Silva E A, De B E. Homoclinic and periodic orbits for Hamiltonian systems. Ann Sc Norm Super Pisa Cl Sci, 1998, 26: 285-301
[6] Yang J, Zhang F. Infinitely many homoclinic orbits for the second order Hamiltonian systems with superquadratic potentials. Nonlinear Anal RWA, 2009, 10: 1417-1423
[7] Brezis H, Nirenberg L. Remark on finding critical points. Comm Pure Appl Math, 1991, 44: 939-963
[8] Carriao P C, Miyagaki O H. Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems. J Math Anal Appl, 1999, 230: 157-172
[9] Alves C O, Carriao P C, Miyagaki O H. Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation. Appl Math Lett, 2003, 16(5): 639-642
[10] Marek I, Joanna J. Homoclinic solutions for a class of second order Hamiltonian systems. J Differential Equations, 2005, 219(2): 375-389
[11] Ou Z Q, Tang C. L. Existence of homoclinic solution for the second order Hamiltonian systems. J Math Anal Appl, 2004, 291(1): 203-213
[12] Zhang S Q. Symmetrically homoclinic orbits for symmetric Hamiltonian systems. J Math Anal Appl, 2000, 247(2): 645-652
[13] Ding Y H. Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems. Nonlinear Anal, 1995, 25(11): 1095-1113
[14] Zhang Q, Liu C. Infinitely many homoclinic solutions for second order Hamiltonian systems. Nonlinear Anal, 2010, 72: 894-903
[15] Zou W, Schechter M. Critical Point Theory and Its Applications. New York: Springer-Science, 2006
[16] Zou W. Variant fountain theorems and their applications. Manuscripta Math, 2001, 104: 343-358
[17] Adams R A, Fournier J J F. Sobolev Spaces (Second Edition). New York: Academic Press, 2003
[18] Sun J, Chen H, Nieto J J. Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems. J Math Anal Appl, 2011, 373(1): 20-29
[19] Yang L, Chen H, Sun J. Infinitely many homoclinic solutions for some second order Hamiltonian systems. Nonlinear Anal, 2011, 74: 6459-6468
|